
Node protection for SR-TE
Paths

Shraddha Hegde

Chris Bowers

IETF-95

Topics

• Need for node protection

• Explicit paths in segment routing

• Solution

- Building context tables

- Node-sids, Adj-sids, Binding-sids protection

- Operation in a failure scenario

Need for node protection

• High network resiliency needed for services

• Node can go out of service

- Software crashes

- Catastrophic events

- Power failure

Explicit Routing in SR

• Paths are described with a

- list of adjacency segments

- list of node segments

- list of adjacency and node segments

- list of binding sids and adjacency sids

• The midpoints do not maintain per-LSP state

• With explicitly routed LSPs using RSVP, a PLR can figure out the next-next-
hop node by look at the RSVP signaling messages

• For SR explicit paths, the PLR needs to figure out the next-next-hop of a
given LSP based on its label stack.

Explicit paths with node-sids

• SR explicit paths can be a set of node-sids describing the path.

• If a node described by one of the labels in the stack goes down, LFA
procedures cannot protect the traffic

• The next label below the top label should be used to determine the
protection path

• In case of different SRGBs across nodes, it’s necessary for a PLR to

understand the next label in the stack, which must be interpreted in
the context of the SRGB of the failed node

Explicit path using node-sid
• Explicit path from R1-

>R5 built using two
label stack

• If R8 goes down, R7
drops the traffic since
R7 cannot provide
node protection for R8

• Need to look into the
next label in the stack

10 10 10 10

10

30

100 60

10

R1 R2 R3 R4 R5

R6

R7 R8

Sid: 1 Sid: 2 Sid: 3 Sid: 4 Sid: 5

Sid: 8Sid: 7

Sid: 6

SPF path from R1->R5

1000-2000 1000-2000

1000-2000

1000-2000

1000-2000

3000-4000

1000-2000
1000-2000

3005

1008

Solution • Every node builds a context table
for its neighbors

• The context table contains in-
labels as per the SRGB of the
neighbor

• The next-hop is built by looking
into the SPF and Backup SPF
computations of R7 for R5

• All the loop free paths (including
primary & backup) are examined
and the path that avoids
protected neighbor is picked and
installed in context table.

10 10 10 10

10

30

100 60

10

R1 R2 R3 R4 R5

R6

R7 R8

Sid: 1 Sid: 2 Sid: 3 Sid: 4 Sid: 5

Sid: 8Sid: 7

Sid:6

SPF path from R1->R5

1000-2000 1000-2000

1000-2000

1000-2000

1000-2000

3000-4000

1000-2000
1000-2000

3005

1008

Dest Out label
1001 Fwd to R1
1002 swap1002 fwd to R1
1003 swap1003 fwd to R1
…
1005 Swap 1005 fwd to R1
…
1008 fwd toR8

* pop, lookup context.r8

Context.r8

Dest Out label
3001 Fwd to R1
3002 swap 1002 fwd to R1

3003 Swap 1003 fwd to R1
…
3005 Swap 1005 fwd to R1
…

Solution for adj-sids
• Every node builds a

context tables for its
neighbors

• The context table
contains adj-sids as
advertised by the
protected neighbor

• The next-hop in the
context table is built by
looking into SPF and
Backup SPF computations
for the end point
represented by the label

• All the loop free paths
(including primary &
backup) are examined and
the path that avoids
protected neighbor is
picked and installed in
context table.

10 10 10 10

10

30

100 60

10

R1 R2 R3 R4 R5

R6

R7 R8

Sid: 1 Sid: 2 Sid: 3 Sid: 4 Sid: 5

Sid: 8Sid: 7

Sid: 6

1000-2000 1000-2000

1000-2000

1000-2000

1000-2000

3000-4000

1000-2000
1000-2000

R1-R2:1024 R3-R8:1044 R4-R5:1064

R8-R4:1054

R2-R3:1034

1064

1054

1044

1034

Explicit path from R1-
>R5 using adj-sids

Context.R8

In-label out-label
1044 pop, fwd to R8

* pop, lookup
context.R8
1004 pop,fwd to R4

*push 3004 fwd to R8

In-label out-label
1054 pop, fwd to R4
1074 Swap 1007, fwd to R2

R8-R7:1074

Transit table at R3

Operation on failure
• The backup path for

label 1054 results into a
context table lookup

• The context table of R8
is looked up for the next
label in the stack

• The actions specified for
the in-label 1054 are
performed10 10 10 10

10

30

100 60

10

R1 R2 R3 R4 R5

R6

R7 R8

Sid: 1 Sid: 2 Sid: 3 Sid: 4 Sid: 5

Sid: 8Sid: 7

Sid: 6

1000-2000 1000-2000

1000-2000

1000-2000

1000-2000

3000-4000

1000-2000
1000-2000

R2:1024 R8:1044 R5:1064

R4:1054

R3:1034

1064

1054

1044

1034

Explicit path from R1-
>R5 using adj-sids

Context.R8

In-label out-label
1044 pop, fwd to R8

* pop, lookup
context.R8

In-label out-label
1054 pop, fwd to R4
1074 Swap 1007, fwd to R2

R7:1074

Transit table at R3

1064

1054

1044 1064

Node
protecting
backup path

Binding Sids • Binding SIDs may be used to
represent sub paths

• The backup nexthop for the
remote end point represented
by binding sid is built.

• All the loop free paths
(including primary & backup)
are examined and the path
that avoids protected
neighbor is picked and
installed as backup nexthop.

10 10 10 10

10

30

100 60

10

R1 R2 R3 R4 R5

R6

R7 R8

Sid: 1 Sid: 2 Sid: 3 Sid: 4 Sid: 5

Sid: 8Sid: 7

Sid:6

1000-2000 1000-2000

1000-2000

1000-2000

1000-2000

3000-4000

1000-2000
1000-2000

1005

7048

Dest Out label
1003 swap1003 fwd to R7
…
1005 Swap 1005 fwd to R7
…
7048 swap 3004, push 1008

R2-R4: 7048
R1-R2:1024

1024

Context r2

Questions & Comments

THANKS

