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Need for node protection

• High network resiliency needed for services

• Node can go out of service

- Software crashes          

- Catastrophic events

- Power failure



Explicit Routing in SR

• Paths are described with a 

- list of adjacency segments

- list of node segments

- list of adjacency and node segments

- list of binding sids and adjacency sids

• The midpoints do not maintain per-LSP state

• With explicitly routed LSPs using RSVP, a PLR can figure out the next-next-
hop node by look at the RSVP signaling messages

• For SR explicit paths, the PLR needs to figure out the next-next-hop of a 
given LSP based on its label stack.



Explicit paths with node-sids

• SR explicit paths can be a set of node-sids describing the path.

• If a node described by one of the labels in the stack goes down,  LFA 
procedures cannot protect the traffic

• The next label below the top label should be used to determine the 
protection path

• In case of different SRGBs  across nodes, it’s necessary for a PLR to

understand the next label in the stack, which must be interpreted in 
the context of the SRGB of the failed node



Explicit path using node-sid
• Explicit path from R1-

>R5 built using two 
label stack

• If R8 goes down, R7 
drops the traffic since 
R7 cannot provide 
node protection for R8

• Need to look into the 
next label in the stack
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Solution • Every node builds a context table 
for its neighbors

• The context table contains in-
labels as per the SRGB of the 
neighbor

• The next-hop is built by looking 
into the SPF and Backup SPF 
computations of R7 for R5

• All the loop free paths (including 
primary & backup) are examined 
and the path that avoids 
protected neighbor is picked and 
installed in context table.
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Dest Out label
1001  Fwd to R1
1002  swap1002 fwd to R1
1003  swap1003 fwd to R1
…
1005   Swap 1005 fwd to R1
…
1008   fwd toR8                          

* pop, lookup  context.r8

Context.r8

Dest Out label
3001  Fwd to R1
3002  swap 1002 fwd to R1

3003  Swap 1003 fwd to R1
…
3005   Swap 1005 fwd to R1
…



Solution for adj-sids
• Every node builds a 

context tables for its 
neighbors

• The context table  
contains adj-sids as 
advertised by the 
protected neighbor

• The next-hop in the 
context table is built by 
looking into SPF and 
Backup SPF computations 
for the end point 
represented by the label

• All the loop free paths 
(including primary & 
backup) are examined and 
the path that avoids 
protected neighbor is 
picked and installed in 
context table.
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Explicit path from R1-
>R5 using adj-sids

Context.R8

In-label   out-label
1044 pop, fwd to    R8

* pop, lookup  
context.R8
1004        pop,fwd to R4

*push 3004 fwd to R8

In-label             out-label
1054             pop, fwd to R4
1074   Swap 1007, fwd to R2

R8-R7:1074

Transit table at R3



Operation on failure
• The backup path for 

label 1054 results into a 
context table lookup

• The context table of R8 
is looked up for the next 
label in the stack

• The actions specified for 
the in-label 1054 are 
performed10 10 10 10
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Context.R8

In-label   out-label
1044 pop, fwd to    R8

* pop, lookup 
context.R8

In-label             out-label
1054             pop, fwd to R4
1074   Swap 1007, fwd to R2
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Binding Sids • Binding SIDs may be used to 
represent sub paths

• The backup nexthop for the 
remote end point represented 
by binding sid is built.

• All the loop free paths 
(including primary & backup) 
are examined and the path 
that avoids protected 
neighbor is picked and 
installed as backup nexthop.
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Dest Out label
1003  swap1003 fwd to R7
…
1005   Swap 1005 fwd to R7
…
7048   swap 3004, push 1008        

R2-R4: 7048
R1-R2:1024
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Context r2



Questions & Comments
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