
TLS 1.3

draft-ietf-tls-tls13-12

Eric Rescorla

Mozilla

ekr@rtfm.com

IETF 95 TLS 1



Overview

• Changes since draft-10

• Outstanding consensus calls

• 1-RTT PSK and session tickets

• Context values

• Key schedule and key separation

• 0-RTT details

• Minor issues
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Changes since draft-10

• Restructure authentication along uniform lines *

• Restructure 0-RTT record layer *

• Reset sequence numbers on key changes

• Import CFRG Curves

• Zero-length additional data for AEAD

• Revised signature algorithm negotiation *

• Define exporters *

• Add anti-downgrade mechanism *

• Add PSK cipher suites

• Other editorial
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Restructuring Authentication

• TLS 1.3 has four authentication contexts

– 1-RTT server

– 1-RTT client

– 0-RTT client†

– Post-handshake

• All were slightly different

• draft-12 unifies them into one common idiom

†Marked for death.

IETF 95 TLS 4



TLS 1.3 Authentication Block

• Three messages: Certificate*, CertificateVerify*, Finished

• Inputs

– Handshake Context (generally the handshake hash)

– Certificate/signing key

– Base key for MAC key

• CertificateVerify =

digitally-sign(Hash(Handshake Context + Certificate))∗

• Finished =

HMAC(finished_key, Handshake Context + Certificate + CertVerify)

• Different finished keys for each direction (based on Base Key)
∗Includes disambiguating context string.
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Eye Chart

+----------------+-----------------------------------------+--------+

| Mode | Handshake Context | Base |

| | | Key |

+----------------+-----------------------------------------+--------+

| 0-RTT | ClientHello + ServerConfiguration + | xSS |

| | Server Certificate + CertificateRequest | |

| | (where ServerConfiguration, etc. are | |

| | from the previous handshake) | |

| | | |

| 1-RTT (Server) | ClientHello ... ServerConfiguration | master |

| | | secret |

| | | |

| 1-RTT (Client) | ClientHello ... ServerFinished | master |

| | | secret |

| | | |

| Post-Handshake | ClientHello ... ClientFinished + | master |

| | CertificateRequest | secret |

+----------------+-----------------------------------------+--------+
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Restructure 0-RTT Record Structure

• draft-10 had a somewhat idiosyncratic design

• draft-12 0-RTT parallels 1-RTT

– handshake for handshake data

– application_data for application data

– New end_of_early_data (warning) alert for separation

– Separate handshake and traffic keys
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Revised Signature Algorithm Negotiation (I)

(davidben)

• TLS 1.2:

struct {

HashAlgorithm hash;

SignatureAlgorithm signature;

} SignatureAndHashAlgorithm;

• Curves were orthogonal (supported_curves)

• It seemed like a good idea at the time

• ... but new signatures algorithms are tied to one hash for each

curve size

• Proposal from davidben: define a new structure that ties

everything together
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Revised Signature Algorithm Negotiation (II)

enum {

// RSASSA-PKCS-v1_5 algorithms.

rsa_pkcs1_sha1 (0x0201),

rsa_pkcs1_sha256 (0x0401),

rsa_pkcs1_sha384 (0x0501),

rsa_pkcs1_sha512 (0x0601),

...

} SignatureScheme;

• These line up with the existing code points

• New code points define the triplet: signature algorithm, curve,

hash
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Define Exporters

• RFC 5705 defined exporters in terms of the PRF

– We removed the PRF....

• New definition:

HKDF-Expand-Label(HKDF-Extract(0, exporter_secret),

label, context_value, length)

• Note: this doesn’t cover 0-RTT. More on this later.
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Anti-Downgrade Mechanism I (Green/Bhargavan)

• TLS 1.2 and below downgrade defense was tied to the Finished

message

• TLS 1.3 downgrade is tied to both Finished and server

CertificateVerify

– So TLS 1.3 resists downgrade even when the key exchange is

weak

– ... but what about downgrade to TLS 1.2 or 1.1
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Anti-Downgrade Mechanism II (Green/Bhargavan)

• Countermeasure: taint the ServerRandom

– If server supports TLS 1.2 or TLS 1.3 but client offers a lower

version use a special ServerRandom

∗ Top eight bytes are 44 4F 57 4E 47 52 44 01 (TLS 1.3)

or 44 4F 57 4E 47 52 44 00

∗ This is covered by the server signature

– Clients MUST check

• This doesn’t protect you if you negotiate to static RSA

– Didn’t you want PFS anyway
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Mailing List Recap: 0-RTT Client Authentication

• Current design: client signs the

ClientHello+...<Server context>

– The authentication is tied to the client’s (EC)DH share

• This is very brittle

– Effectively it’s a long-term DH certificate

∗ Modulo anti-replay issues

– Compromise of either DH share allows impersonation

• 0-RTT PSK also scary

• Proposal on list: Remove 0-RTT Client Authentication entirely
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(EC)DHE-based 0-RTT

• Currently we have 0-RTT modes

– (EC)DHE: Server provides (EC)DHE static key in

ServerConfiguration and pairs it with its ephemeral

– PSK: Based on session ticket

• Proposal: only do the PSK-based mode (Fournet et al., Sullivan

et al.)

– People are going to want to do PSK-resumption anyway for

perf reasons

– Implicit binding between connection parameters

– No need for a ServerConfiguration object

– The crypto analysis of (EC)DHE 0-RTT is tricky

– Can always re-phrase DH as a “PSK type” later
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Objection: What about out-of-band priming?

• You can publish an (EC)DH key (e.g., in the DNS)

– 0RTT-PSK isn’t compatible with out-of-band priming (duh!)

• But...

– This brings in all the concerns about delegation

– No really plausible priming mechanism (DNS not viable)

– See previous comments about DH-as-PSK
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Objection: Security impact of client-side storage

• Storing a DH public key requires only storage integrity

• Storing a PSK requires secrecy

• But...

– Client-side secure storage already needed for session caching

– Generally session caches don’t survive program shutdown

– Google’s measurements in QUIC show this has no performance

impact versus long-term storage
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Objection: PFS

• With (EC)DHE you get

– No PFS for 0-RTT data

– PFS for 1-RTT data

• Can do PSK 0-RTT two ways

– PSK only (no PFS)

– PSK-(EC)DHE (same PFS as with DH 0-RTT)

• Note: can do better with server-side state as opposed to tickets
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Objection: WebRTC

• WebRTC might have a use for this

• But...

– We have a different hack for that

(draft-rescorla-dtls-in-udp)
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Objection: Server Proof of Private Key

• The DHE 0-RTT mode forces the server to re-sign every time

– The point of PSK is to avoid the server doing that

• This creates a tradeoff between 0-RTT and continuing proof of

server key

• Solution: Allow 0-RTT PSK to be used with signed (EC)DHE

exchange∗

∗Details TBD.
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Proposal: Remove 0-RTT DHE-based mode

• The only 0-RTT mode will be PSK

• We can re-add 0-RTT DH mode later if needed

– Probably more oriented towards external priming
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NewSessionTicket Format (Bhargavan)

• NewSessionTicket just has expiry.... more information needed

– Cipher suites the server would accept (ECHDE-PSK or PSK,

especially)

– Which 0-RTT modes you would accept: None, Replayable, All

(????)

enum {

no_early_data_allowed(0),

replayable_early_data_allowed (1),

all_early_data_allowed(2),

(65535)

} EarlyDataType;

uint32 ticket_lifetime;

opaque ticket<0..2^16-1>;

CipherSuite cipher_suites<2..2^16-2>;

EarlyDataType early_data_type

} NewSessionTicket;
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0-RTT PSK Extensions I

• We do need extensions to contextualize 0-RTT data

– ALPN

– Elapsed time (PR#437)

• Where do they go?

– EarlyDataIndication.extensions

– EncryptedExtensions (let’s add this back)

• Relationship to original connection?
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0-RTT PSK Extensions II: Where do they go?

• EarlyDataIndication has an extensions field

– But this is in the clear

– As much stuff as possible should be secret

• We have gone back and forth on client EncryptedExtensions

– We should add it back

– Minimally want it for privacy-leaking data like elapsed time

– Semantics: only apply to the 0-RTT data

• Proposed dividing line: same as for

ServerHello.extensions/EncryptedExtensions

IETF 95 TLS 23



0-RTT PSK Extensions III: Semantics

• Two basic options

– Omit all the extensions and require both sides to use what was

picked last time

– Client sends the relevant extensions (defining what it expects

the server to want) and the server can reject if it choked

• “Matching” options

– Extensions must match the 1-RTT negotiation (Requires both

sides to keep the same configuration)

– Extensions must match the last negotiation (Requires both

sides to remember)

• Proposal: extensions MUST be the same as last time and server

must reject 0-RTT if its config changes
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Rejection of 0-RTT: HelloRetryRequest (Bhargavan)

• Setting: client offers PSK with 0-RTT

• ... server sends HelloRetryRequest

• What happens to the 0-RTT data

– Can it be resent on the next flight

• Proposal: No. HelloRetryRequest sends you back to the

beginning.
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Rejection of 0-RTT: Finding the next handshake

block

• What happens if server rejects 0-RTT?

• Need to skip ahead to next non 0-RTT client message

– HelloRetryRequest → wait for ClientHello

– ServerHello → wait for Certificate or Finished

• Right now this means trial-decryption

• Karthik suggests that the client sends end_of_early_data alert

in the clear upon rejection

– Probably easier to implement, very slightly worse privacy

• Proposal: Adopt this
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0-RTT Exporters

• We haven’t defined any

• We need them

– For Tokbind

– For QUIC

• MT will be a sad panda

• Construction needed...
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End of Day 1
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Key Separation: A Layman’s View

• Basic idea: different keys for different purposes

– For example, handshake and application data

• Why? Analyze different pieces separately

– ... and then put them together

• Handshake: establish parameters and output traffic keys

• Application Layer: take traffic keys and protect traffic

• If you use separate keys, handshake doesn’t depend on application

layer security

– And to some extent vice versa, as long as handshake delivers

on certain guarantees
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TLS Key Separation Issues

• TLS 1.2 used the same keys to encrypt handshake and application

data

– Specifically, Finished message

– This can still be proven secure but its far more difficult

• TLS 1.3 generally has different handshake and application keys

• Exceptional cases

– NewSessionTicket

– Post-handshake authentication

– KeyUpdate

• Also, 0.5RTT vs. 1RTT data
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What is 0.5 RTT Data?

Client Server

ClientHello [Random, gc] //

ServerHello [Random, gs]...Finishedoo

Application data (”0.5RTT”)oo

Finished //

oo Application data (”1RTT”) //
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With client auth?

Client Server

ClientHello [Random, gc] //

ServerHello [Random, gs]...Finishedoo

Application data (to anonymous user)oo

Certificate...Finished //

oo Application data (to authenticated user) //
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Non-digression: Retroactive authentication

• Data originally interpreted as an anonymous peer

• Then you authenticated

– Now reinterpreted as an authenticated peer

• We have bad models for this

– But it happens all the time (e.g., shopping carts)

• Application semantic even if we have a cryptographic separation
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One more thing about 0.5 RTT Data

• The server sends it before the client proves its live

• If you’re using PSK, this means that attackers can get the server

to replay

• Like a weaker version of 0-RTT replay issue
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Possible Resolutions

1. No change

2. Warn against/forbid 0.5 RTT data when client auth is used

• Possibly relax this if we get analysis that it is safe

3. Include client’s second flight in 1RTT application keys

• So you can’t do 0.5 RTT with client auth

4. Change keys between 0.5RTT and 1RTT

• Proposal: #2.
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Key Separation: Post-handshake Messages

• We have separated handshake and application data keys

– ... but only for the main handshake

• Post-handshake messages that you might think of as handshake

– NewSessionTicket

– Client authentication

– KeyUpdate

• This makes cryptographers sad

– Because compromise of application keys might affect

handshake
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Demuxing Options

• Two keys in use concurrently

– Handshake (or post-handshake)

– Application

– First time this happens in TLS

• How do I know which key is being used?

– Trial decryption

– Wrap handshake-encrypted messages in application keys

– Restore the content type byte

• Based on Tuesday, trial decryption seems best (if we do this at all)
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What would be encrypted under handshake keys?

NewSessionTicket Yes

Client Authentication Yes

KeyUpdate ???

Alerts No
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Which key?

• Existing handshake traffic key

• New post-handshake traffic key

• Minor additional complexity in key schedule
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Key Context (yes, yes, more context)

• Life has gotten simpler since we got rid of DHE 0-RTT

– But the whole question of context seems a little brittle

– cf. the Scott et al. paper from last year

• Karthik proposed being more explicit about binding context into

the handshake

– This would strengthen a bunch of stuff
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What do we mean by context?

• PSK/Resumption-PSK: Some public function of the key

– E.g., HKDF(PSK, <fixed label>)

• DHE 0-RTT (if we bring it back): the server context

–

ServerConfiguration + ServerCertificate + CertificateRequest
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Explicit Binding

struct {

opaque psk_identity<0..2^16-1>;

opaque context<0..255>;

} PreSharedKeyInfo;

struct {

select (Role) {

case client:

PreSharedKeyInfo keys<2..2^16-1>;

case server:

uint16 index; // The selected index

}

} PreSharedKeyExtension;

• Client supplies the context value in ClientHello

• Server checks it (important!)

• Automatically included in the handshake hash
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Implicit Binding

• One unreviewed possibility∗

Option 1: Include in SS

K_hh = HKDF-Expand-Label(xSS, Handshake Hash Key, )

handshake_hashes = HMAC(K_hh, Hash(Handshake messages))

// IMPORTANT: Need to revise SS if we re-add DHE-0-RTT

Option 2: Use directly

handshake_hashes = Hash(Hash(Context) || Hash(Handshake messages))

• Every time we use handshake hashes mix in something derived

from context

• Client and server implicitly do this (no new signaling)

∗Warning, potentially busted handwaving.
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Simplified Key Schedule

• The current key schedule is ag-

nostic about the order when

we get SS and ES

– But for all known modes we

get SS (if at all) then ES (if

at all)

• This suggests a simpler (linear)

key schedule

0

|

SS -> HKDF

| \

| \

v v

X1 0-RTT Traffic Keys *

|

|

v

ES -> HKDF [ClientHello, ServerHello]

| \

| \

v v

X2 1-RTT Traffic Keys *

|

|

v

0 -> HKDF [ClientHello...ClientFinished]

|

|

v

RMS, EMS
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Issue #215: Let servers send known groups

• Right now client sends some set of keys

– P-256, X25519, etc.

• Server picks one

• No way for server to tell client “I would take group A, but I would

prefer/would also take group B”

– Without rejecting (ugh!)

• Easy fix: allow server to send SupportedGroups in ServerHello
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Issue #426: Receive Generation field in KeyUpdate

• Some people want to build TLS monitoring systems that aren’t

MITM

• Idea: update traffic keys to generation N + 1, then release keys N

to monitoring device

• Issue: how do you have partially trusted devices?

– That can’t inject traffic

– Client knows when it has updated its receive key but not when

the server has

• Proposed fix: add a “receive generation” field to KeyUpdate so

client knows when it is safe.
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Implementation Status

Name Language ECDHE DHE PSK 0-RTT

NSS C Yes No Yes Yes*

Mint Go Yes Yes Yes Yes

nqsb OCaml No Yes Yes No

ProtoTLS JavaScript Yes Yes Yes Yes

miTLS F* Yes Yes Yes ???

• NSS interops with Mint and ProtoTLS

– NSS 0-RTT in unintegrated branch

• ProtoTLS interops with nqsb

• Other combinations untested
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