
TLS 1.3

draft-ietf-tls-tls13-12

Eric Rescorla

Mozilla

ekr@rtfm.com

IETF 95 TLS 1

Overview

• Changes since draft-10

• Outstanding consensus calls

• 1-RTT PSK and session tickets

• Context values

• Key schedule and key separation

• 0-RTT details

• Minor issues

IETF 95 TLS 2

Changes since draft-10

• Restructure authentication along uniform lines *

• Restructure 0-RTT record layer *

• Reset sequence numbers on key changes

• Import CFRG Curves

• Zero-length additional data for AEAD

• Revised signature algorithm negotiation *

• Define exporters *

• Add anti-downgrade mechanism *

• Add PSK cipher suites

• Other editorial

IETF 95 TLS 3

Restructuring Authentication

• TLS 1.3 has four authentication contexts

– 1-RTT server

– 1-RTT client

– 0-RTT client†

– Post-handshake

• All were slightly different

• draft-12 unifies them into one common idiom

†Marked for death.

IETF 95 TLS 4

TLS 1.3 Authentication Block

• Three messages: Certificate*, CertificateVerify*, Finished

• Inputs

– Handshake Context (generally the handshake hash)

– Certificate/signing key

– Base key for MAC key

• CertificateVerify =

digitally-sign(Hash(Handshake Context + Certificate))∗

• Finished =

HMAC(finished_key, Handshake Context + Certificate + CertVerify)

• Different finished keys for each direction (based on Base Key)
∗Includes disambiguating context string.

IETF 95 TLS 5

Eye Chart

+----------------+---+--------+

| Mode | Handshake Context | Base |

| | | Key |

+----------------+---+--------+

| 0-RTT | ClientHello + ServerConfiguration + | xSS |

| | Server Certificate + CertificateRequest | |

| | (where ServerConfiguration, etc. are | |

| | from the previous handshake) | |

| | | |

| 1-RTT (Server) | ClientHello ... ServerConfiguration | master |

| | | secret |

| | | |

| 1-RTT (Client) | ClientHello ... ServerFinished | master |

| | | secret |

| | | |

| Post-Handshake | ClientHello ... ClientFinished + | master |

| | CertificateRequest | secret |

+----------------+---+--------+

IETF 95 TLS 6

Restructure 0-RTT Record Structure

• draft-10 had a somewhat idiosyncratic design

• draft-12 0-RTT parallels 1-RTT

– handshake for handshake data

– application_data for application data

– New end_of_early_data (warning) alert for separation

– Separate handshake and traffic keys

IETF 95 TLS 7

Revised Signature Algorithm Negotiation (I)

(davidben)

• TLS 1.2:

struct {

HashAlgorithm hash;

SignatureAlgorithm signature;

} SignatureAndHashAlgorithm;

• Curves were orthogonal (supported_curves)

• It seemed like a good idea at the time

• ... but new signatures algorithms are tied to one hash for each

curve size

• Proposal from davidben: define a new structure that ties

everything together

IETF 95 TLS 8

Revised Signature Algorithm Negotiation (II)

enum {

// RSASSA-PKCS-v1_5 algorithms.

rsa_pkcs1_sha1 (0x0201),

rsa_pkcs1_sha256 (0x0401),

rsa_pkcs1_sha384 (0x0501),

rsa_pkcs1_sha512 (0x0601),

...

} SignatureScheme;

• These line up with the existing code points

• New code points define the triplet: signature algorithm, curve,

hash

IETF 95 TLS 9

Define Exporters

• RFC 5705 defined exporters in terms of the PRF

– We removed the PRF....

• New definition:

HKDF-Expand-Label(HKDF-Extract(0, exporter_secret),

label, context_value, length)

• Note: this doesn’t cover 0-RTT. More on this later.

IETF 95 TLS 10

Anti-Downgrade Mechanism I (Green/Bhargavan)

• TLS 1.2 and below downgrade defense was tied to the Finished

message

• TLS 1.3 downgrade is tied to both Finished and server

CertificateVerify

– So TLS 1.3 resists downgrade even when the key exchange is

weak

– ... but what about downgrade to TLS 1.2 or 1.1

IETF 95 TLS 11

Anti-Downgrade Mechanism II (Green/Bhargavan)

• Countermeasure: taint the ServerRandom

– If server supports TLS 1.2 or TLS 1.3 but client offers a lower

version use a special ServerRandom

∗ Top eight bytes are 44 4F 57 4E 47 52 44 01 (TLS 1.3)

or 44 4F 57 4E 47 52 44 00

∗ This is covered by the server signature

– Clients MUST check

• This doesn’t protect you if you negotiate to static RSA

– Didn’t you want PFS anyway

IETF 95 TLS 12

Mailing List Recap: 0-RTT Client Authentication

• Current design: client signs the

ClientHello+...<Server context>

– The authentication is tied to the client’s (EC)DH share

• This is very brittle

– Effectively it’s a long-term DH certificate

∗ Modulo anti-replay issues

– Compromise of either DH share allows impersonation

• 0-RTT PSK also scary

• Proposal on list: Remove 0-RTT Client Authentication entirely

IETF 95 TLS 13

(EC)DHE-based 0-RTT

• Currently we have 0-RTT modes

– (EC)DHE: Server provides (EC)DHE static key in

ServerConfiguration and pairs it with its ephemeral

– PSK: Based on session ticket

• Proposal: only do the PSK-based mode (Fournet et al., Sullivan

et al.)

– People are going to want to do PSK-resumption anyway for

perf reasons

– Implicit binding between connection parameters

– No need for a ServerConfiguration object

– The crypto analysis of (EC)DHE 0-RTT is tricky

– Can always re-phrase DH as a “PSK type” later

IETF 95 TLS 14

Objection: What about out-of-band priming?

• You can publish an (EC)DH key (e.g., in the DNS)

– 0RTT-PSK isn’t compatible with out-of-band priming (duh!)

• But...

– This brings in all the concerns about delegation

– No really plausible priming mechanism (DNS not viable)

– See previous comments about DH-as-PSK

IETF 95 TLS 15

Objection: Security impact of client-side storage

• Storing a DH public key requires only storage integrity

• Storing a PSK requires secrecy

• But...

– Client-side secure storage already needed for session caching

– Generally session caches don’t survive program shutdown

– Google’s measurements in QUIC show this has no performance

impact versus long-term storage

IETF 95 TLS 16

Objection: PFS

• With (EC)DHE you get

– No PFS for 0-RTT data

– PFS for 1-RTT data

• Can do PSK 0-RTT two ways

– PSK only (no PFS)

– PSK-(EC)DHE (same PFS as with DH 0-RTT)

• Note: can do better with server-side state as opposed to tickets

IETF 95 TLS 17

Objection: WebRTC

• WebRTC might have a use for this

• But...

– We have a different hack for that

(draft-rescorla-dtls-in-udp)

IETF 95 TLS 18

Objection: Server Proof of Private Key

• The DHE 0-RTT mode forces the server to re-sign every time

– The point of PSK is to avoid the server doing that

• This creates a tradeoff between 0-RTT and continuing proof of

server key

• Solution: Allow 0-RTT PSK to be used with signed (EC)DHE

exchange∗

∗Details TBD.

IETF 95 TLS 19

Proposal: Remove 0-RTT DHE-based mode

• The only 0-RTT mode will be PSK

• We can re-add 0-RTT DH mode later if needed

– Probably more oriented towards external priming

IETF 95 TLS 20

NewSessionTicket Format (Bhargavan)

• NewSessionTicket just has expiry.... more information needed

– Cipher suites the server would accept (ECHDE-PSK or PSK,

especially)

– Which 0-RTT modes you would accept: None, Replayable, All

(????)

enum {

no_early_data_allowed(0),

replayable_early_data_allowed (1),

all_early_data_allowed(2),

(65535)

} EarlyDataType;

uint32 ticket_lifetime;

opaque ticket<0..2^16-1>;

CipherSuite cipher_suites<2..2^16-2>;

EarlyDataType early_data_type

} NewSessionTicket;

IETF 95 TLS 21

0-RTT PSK Extensions I

• We do need extensions to contextualize 0-RTT data

– ALPN

– Elapsed time (PR#437)

• Where do they go?

– EarlyDataIndication.extensions

– EncryptedExtensions (let’s add this back)

• Relationship to original connection?

IETF 95 TLS 22

0-RTT PSK Extensions II: Where do they go?

• EarlyDataIndication has an extensions field

– But this is in the clear

– As much stuff as possible should be secret

• We have gone back and forth on client EncryptedExtensions

– We should add it back

– Minimally want it for privacy-leaking data like elapsed time

– Semantics: only apply to the 0-RTT data

• Proposed dividing line: same as for

ServerHello.extensions/EncryptedExtensions

IETF 95 TLS 23

0-RTT PSK Extensions III: Semantics

• Two basic options

– Omit all the extensions and require both sides to use what was

picked last time

– Client sends the relevant extensions (defining what it expects

the server to want) and the server can reject if it choked

• “Matching” options

– Extensions must match the 1-RTT negotiation (Requires both

sides to keep the same configuration)

– Extensions must match the last negotiation (Requires both

sides to remember)

• Proposal: extensions MUST be the same as last time and server

must reject 0-RTT if its config changes

IETF 95 TLS 24

Rejection of 0-RTT: HelloRetryRequest (Bhargavan)

• Setting: client offers PSK with 0-RTT

• ... server sends HelloRetryRequest

• What happens to the 0-RTT data

– Can it be resent on the next flight

• Proposal: No. HelloRetryRequest sends you back to the

beginning.

IETF 95 TLS 25

Rejection of 0-RTT: Finding the next handshake

block

• What happens if server rejects 0-RTT?

• Need to skip ahead to next non 0-RTT client message

– HelloRetryRequest → wait for ClientHello

– ServerHello → wait for Certificate or Finished

• Right now this means trial-decryption

• Karthik suggests that the client sends end_of_early_data alert

in the clear upon rejection

– Probably easier to implement, very slightly worse privacy

• Proposal: Adopt this

IETF 95 TLS 26

0-RTT Exporters

• We haven’t defined any

• We need them

– For Tokbind

– For QUIC

• MT will be a sad panda

• Construction needed...

IETF 95 TLS 27

End of Day 1

IETF 95 TLS 28

Key Separation: A Layman’s View

• Basic idea: different keys for different purposes

– For example, handshake and application data

• Why? Analyze different pieces separately

– ... and then put them together

• Handshake: establish parameters and output traffic keys

• Application Layer: take traffic keys and protect traffic

• If you use separate keys, handshake doesn’t depend on application

layer security

– And to some extent vice versa, as long as handshake delivers

on certain guarantees

IETF 95 TLS 29

TLS Key Separation Issues

• TLS 1.2 used the same keys to encrypt handshake and application

data

– Specifically, Finished message

– This can still be proven secure but its far more difficult

• TLS 1.3 generally has different handshake and application keys

• Exceptional cases

– NewSessionTicket

– Post-handshake authentication

– KeyUpdate

• Also, 0.5RTT vs. 1RTT data

IETF 95 TLS 30

What is 0.5 RTT Data?

Client Server

ClientHello [Random, gc] //

ServerHello [Random, gs]...Finishedoo

Application data (”0.5RTT”)oo

Finished //

oo Application data (”1RTT”) //

IETF 95 TLS 31

With client auth?

Client Server

ClientHello [Random, gc] //

ServerHello [Random, gs]...Finishedoo

Application data (to anonymous user)oo

Certificate...Finished //

oo Application data (to authenticated user) //

IETF 95 TLS 32

Non-digression: Retroactive authentication

• Data originally interpreted as an anonymous peer

• Then you authenticated

– Now reinterpreted as an authenticated peer

• We have bad models for this

– But it happens all the time (e.g., shopping carts)

• Application semantic even if we have a cryptographic separation

IETF 95 TLS 33

One more thing about 0.5 RTT Data

• The server sends it before the client proves its live

• If you’re using PSK, this means that attackers can get the server

to replay

• Like a weaker version of 0-RTT replay issue

IETF 95 TLS 34

Possible Resolutions

1. No change

2. Warn against/forbid 0.5 RTT data when client auth is used

• Possibly relax this if we get analysis that it is safe

3. Include client’s second flight in 1RTT application keys

• So you can’t do 0.5 RTT with client auth

4. Change keys between 0.5RTT and 1RTT

• Proposal: #2.

IETF 95 TLS 35

Key Separation: Post-handshake Messages

• We have separated handshake and application data keys

– ... but only for the main handshake

• Post-handshake messages that you might think of as handshake

– NewSessionTicket

– Client authentication

– KeyUpdate

• This makes cryptographers sad

– Because compromise of application keys might affect

handshake

IETF 95 TLS 36

Demuxing Options

• Two keys in use concurrently

– Handshake (or post-handshake)

– Application

– First time this happens in TLS

• How do I know which key is being used?

– Trial decryption

– Wrap handshake-encrypted messages in application keys

– Restore the content type byte

• Based on Tuesday, trial decryption seems best (if we do this at all)

IETF 95 TLS 37

What would be encrypted under handshake keys?

NewSessionTicket Yes

Client Authentication Yes

KeyUpdate ???

Alerts No

IETF 95 TLS 38

Which key?

• Existing handshake traffic key

• New post-handshake traffic key

• Minor additional complexity in key schedule

IETF 95 TLS 39

IETF 95 TLS 40

Key Context (yes, yes, more context)

• Life has gotten simpler since we got rid of DHE 0-RTT

– But the whole question of context seems a little brittle

– cf. the Scott et al. paper from last year

• Karthik proposed being more explicit about binding context into

the handshake

– This would strengthen a bunch of stuff

IETF 95 TLS 41

What do we mean by context?

• PSK/Resumption-PSK: Some public function of the key

– E.g., HKDF(PSK, <fixed label>)

• DHE 0-RTT (if we bring it back): the server context

–

ServerConfiguration + ServerCertificate + CertificateRequest

IETF 95 TLS 42

Explicit Binding

struct {

opaque psk_identity<0..2^16-1>;

opaque context<0..255>;

} PreSharedKeyInfo;

struct {

select (Role) {

case client:

PreSharedKeyInfo keys<2..2^16-1>;

case server:

uint16 index; // The selected index

}

} PreSharedKeyExtension;

• Client supplies the context value in ClientHello

• Server checks it (important!)

• Automatically included in the handshake hash

IETF 95 TLS 43

Implicit Binding

• One unreviewed possibility∗

Option 1: Include in SS

K_hh = HKDF-Expand-Label(xSS, Handshake Hash Key,)

handshake_hashes = HMAC(K_hh, Hash(Handshake messages))

// IMPORTANT: Need to revise SS if we re-add DHE-0-RTT

Option 2: Use directly

handshake_hashes = Hash(Hash(Context) || Hash(Handshake messages))

• Every time we use handshake hashes mix in something derived

from context

• Client and server implicitly do this (no new signaling)

∗Warning, potentially busted handwaving.

IETF 95 TLS 44

Simplified Key Schedule

• The current key schedule is ag-

nostic about the order when

we get SS and ES

– But for all known modes we

get SS (if at all) then ES (if

at all)

• This suggests a simpler (linear)

key schedule

0

|

SS -> HKDF

| \

| \

v v

X1 0-RTT Traffic Keys *

|

|

v

ES -> HKDF [ClientHello, ServerHello]

| \

| \

v v

X2 1-RTT Traffic Keys *

|

|

v

0 -> HKDF [ClientHello...ClientFinished]

|

|

v

RMS, EMS

IETF 95 TLS 45

Issue #215: Let servers send known groups

• Right now client sends some set of keys

– P-256, X25519, etc.

• Server picks one

• No way for server to tell client “I would take group A, but I would

prefer/would also take group B”

– Without rejecting (ugh!)

• Easy fix: allow server to send SupportedGroups in ServerHello

IETF 95 TLS 46

Issue #426: Receive Generation field in KeyUpdate

• Some people want to build TLS monitoring systems that aren’t

MITM

• Idea: update traffic keys to generation N + 1, then release keys N

to monitoring device

• Issue: how do you have partially trusted devices?

– That can’t inject traffic

– Client knows when it has updated its receive key but not when

the server has

• Proposed fix: add a “receive generation” field to KeyUpdate so

client knows when it is safe.

IETF 95 TLS 47

IETF 95 TLS 48

Implementation Status

Name Language ECDHE DHE PSK 0-RTT

NSS C Yes No Yes Yes*

Mint Go Yes Yes Yes Yes

nqsb OCaml No Yes Yes No

ProtoTLS JavaScript Yes Yes Yes Yes

miTLS F* Yes Yes Yes ???

• NSS interops with Mint and ProtoTLS

– NSS 0-RTT in unintegrated branch

• ProtoTLS interops with nqsb

• Other combinations untested

IETF 95 TLS 49

