
WebPush @ IETF 95

Brian Raymor

State of Play

The Past – IETF 94 Minutes

▪ webpush-03 milestone
– Added explicit correlation to subscription sets

– Added push message updates (message collapsing)

▪ webpush-04 milestone
– Required Application Servers to include TTL header

– Added push message urgency

▪ Closed Acknowledgement Data issue and pull request

https://www.ietf.org/proceedings/94/minutes/minutes-94-webpush

The Present – IETF 95

▪ webpush-05 milestone
– Issue 44 - Sender and Client Authentication

Related agenda item: Voluntary Application Server Identification

– Issue 75 - Improve Security Considerations section

▪ Informative reference to content encryption

▪ Informative reference to vapid authentication (pending adoption)

Related agenda item : Content Encoding Status

Related agenda item : Voluntary Application Server Identification

– Issue 81 - Simplifying Acknowledgements

https://github.com/webpush-wg/webpush-protocol/issues/44
https://github.com/webpush-wg/webpush-protocol/issues/75
https://github.com/webpush-wg/webpush-protocol/issues/81

Simplifying Acknowledgements

Eliminates the :params:push:receipts link relation and its machinery

Subscribing to Messages (Before)

User
Agent

Push
Service

Application
Server(s)

// create message subscription
POST <configured-endpoint>

Distribute :params:push and :params:push:receipts

201 (Created)
urn:ietf:params:push

urn:ietf:params:push:receipts
urn:ietf:params:push:set
Location : my-messages

Subscribing to Messages (After)

User
Agent

Push
Service

Application
Server(s)

// create message subscription
POST <configured-endpoint>

Distribute :params:push and :params:push:receipts

201 (Created)
urn:ietf:params:push

urn:ietf:params:push:receipts
urn:ietf:params:push:set
Location : my-messages

Subscribing to Receipts (Before)

Push
Service

Application
Server(s)

// create a receipt subscription
POST :params:push:receipts

201 (Created)
Location: my-receipt

Subscribing to Receipts (After)

Push
Service

Application
Server(s)

// create a receipt subscription
POST :params:push:receipts

201 (Created)
Location: my-receipt

Publishing without Receipts (unchanged)

Push
Service

Application
Server(s)

201 (Created)
Location: my-message

// request push message delivery + acknowledgement
POST :params:push

Publishing with Receipts (Before)

Push
Service

Application
Server(s)// monitor for receipts

GET my-receipt

201 (Created)
Location: my-message

// request push message delivery + acknowledgement
POST :params:push

:params:push:receipt -> my-receipt

// receive receipt
204 (No Content)

:path = my-message

Publishing with Receipts (After)

Push
Service

Application
Server(s)// monitor for receipts

GET my-receipt

202 (Accepted)
Location: my-message

:params:push:receipt

// request push message delivery + acknowledgement
POST :params:push

:params:push:receipt -> my-receipt
Prefer: respond-async

// receive receipt
204 (No Content)

:path = my-message

// monitor for receipts
GET :params:push:receipt

Requesting receipts
with Prefer: respond-async

POST :params:push
Prefer: respond-async

The "respond-async" preference indicates that the
client prefers the server to respond asynchronously to
a response. For instance, in the case when the length of
time it takes to generate a response will exceed some
arbitrary threshold established by the server, the server
can honor the "respond-async" preference by
returning a 202 (Accepted) response.

https://tools.ietf.org/html/rfc7240#section-4.1

Monitoring Status of receipts
with :params:push:receipt

202 (Accepted)
Location: my-message
:params:push:receipt

The 202 (Accepted) status code indicates that the request
has been accepted for processing, but the processing has
not been completed … The representation sent with this
response ought to describe the request's current status and
point to (or embed) a status monitor that can provide the
user with an estimate of when the request will be fulfilled.

https://tools.ietf.org/html/rfc7231#section-6.3.3

urn:ietf:params:push:receipt

▪ The urn:ietf:params:push link relation corresponds to and provides
write access to a specific subscription for a specific User Agent.

Assuming that the User Agent only distributes that params:push link to
one Application Server …

▪ The Push Service can return the same urn:ietf:params:push:receipt
for message delivery requests from an Application Server to the
same urn:ietf:params:push.

▪ The Application Server monitors one resource for receipts from a
specific subscription for a specific User Agent.

“What would the :receipt link identify?”
- Martin Thomson

This is a resource that the application server would monitor for
receipts. But that has the same problem we had with subscriptions
that led to the creation of subscription sets, namely that the
application server has to make a request for every push message it
wants to track.

If this were to act like a subscription set rather than a subscription ,
… this would be better. The only question then is how an application
server causes its receipts to be correlated. The obvious answer is to
create the subscription set in an initial request and use the inclusion
of the link relation in the push message request as an indication that
the application server wants to link receipts to an existing
subscription.

