Scheduling Function One (SF1) for hop-by-hop Scheduling in 6tisch Networks

draft-satish-6tisch-6top-sf1-01
Satish Anamalamudi
Mingui Zhang
Charlie Perkins
S.V.R Anand
satish.anamalamudi@huawei.com
The need for SF1

SF0:

- 1-Hop scheduling protocol.
- Schedule for aggregate traffic flows (L3-bundle).
- Dynamic cell adaptation (OTF Scheduling).
- Support best effort-traffic flows.

But, applications (Industrial-M2M, Medical-IoT) need Time critical traffic flows.

SF1:

- End-to-end scheduling protocol.
- Schedule isolated traffic flows.
- Dedicated end-to-end L2-bundles.
- Support time-critical traffic flows.
Label Distribution Protocol

RSVP-MPLS

• Explicit label mechanism.
• Packet Switching Capability.
• PATH message with “Label Request”.
• RESV message with “Label Object”.
• Per-hop labels (4 Bytes) are created by downstream node.

RSVP-GMPLS

• Implicit label mechanism.
 • Timeslot Switching Capability (TSC).
 • Lambda Switching Capability (LSC).
 • Fiber Switching Capability (FSC).
 • “Cell Switching Capability (CSC)” for 6tisch Networks.
Scheduling Function One (SF1)

Objective of SF1

• When to reserve end-to-end resources.
• How to provide implicit labels for the reserved resources.
• When to schedule end-to-end L2-bundles.
• How to associate the TrackID for each L2-bundle.

Resource Reservation Protocol

• Extension of GMPLS-RSVP-TE[RFC3473].
• Treat other protocol as “object” in RSVP.
• Each cell(ChannelOffset+SlotOffset) is used as an “implicit label”.

Assumption

• End-to-end route path is available [storing or non-storing mode].
End to End Scheduling with SF1: RSVP-PATH

CSC : Cell Switching Capability

“RPLInstanceID” is in “SENDER_TEMPLATE” and “FLOW_SPEC”.

July 18, 2016 IETF 96 – 6TiSCH WG 5
End to End Scheduling with SF1 : RSVP-RESV

3-Step Transaction

TrackID = Sender/Destination IP address + RPLInstanceID

- **SENDERS** _TEMPLATE / _FLOW_SPEC_ has “Sender IP address” and “RPLInstanceID”.
- **SESSION** has “Destination IP address”.

Source

- **IP**
- **6top**
- **SF1**
- **6P**
- **TSCH-MAC**
- **PHY**

nodeB

- **IP**
- **6top**
- **SF1**
- **6P**
- **TSCH-MAC**
- **PHY**

Destination

- **IP**
- **6top**
- **SF1**
- **6P**
- **TSCH-MAC**
- **PHY**

Node B (Outgoing Interface):
- “Resv Message” with “6P request” + TrackID
- 6P response with CellList […]
- 6P Confirmation with CellList […] + Label Object

Destination (Incoming Interface):
- Rspec : Reserves bandwidth
- SF1 : Maps Bandwidth to cells.

LABEL SET :
<Label> = <Channel offset + Slot offset>

Rspec : Reserves bandwidth.
SF1 : Maps Bandwidth to L2-bundle (cells).

Resv State : "cell label" information
End to End Scheduling with SF1: RSVP-RESV

3-Step Transaction

6P Confirmation (Source to node B) -> “Source cell label” is mapped to “node B cell label”.

Rspec: Reserves bandwidth.
SF1: Maps Bandwidth to L2-bundle (cells).

6P Confirmation with CellList […] + Label Object

6P response with CellList […]

“Resv Message” with “6P request” + TrackID

Source (Outgoing Interface)

nodeB (Incoming Interface)

Destination

Resv State: "cell label" information

-label set:
<Label> = <Channel offset + Slot offset>

July 18, 2016
IETF 96 – 6TiSCH WG
End to End Scheduling with SF1 : RSVP-RESV

2-Step Transaction

Source

Node B (Outgoing Interface) :

< Resv Message > ::=
Rspec : Reserves bandwidth
SF1 : Maps Bandwidth to cells.
6P Response(Transmit cells):

Resv State : Store "cell label" information

Destination

Destination (Incoming Interface) :

< Resv Message > ::=
Rspec : Reserves bandwidth.
SF1 : Maps Bandwidth to L2-bundle (cells).
LABEL SET :
<Label>= <Channel offset + Slot offset >
6P Request(Receive cells):

Tracker = Sender/Destination IP address + RPLInstanceID
SENDANCE TEMPLATE / FLOW SPEC has “Sender IP address” and “RPLInstanceID”.
SESSION has “Destination IP address”.

July 18, 2016

IETF 96 – 6TiSCH WG
End to End Scheduling with SF1: RSVP-RESV

2-Step Transaction

Source (Outgoing Interface):
- `<Resv Message> ::= Rspec : Reserves bandwidth
 SF1 : Maps Bandwidth to L2-bundle (cells).
 6P Response (Transmit cells):

Node B (Incoming Interface):
- `<Resv Message> ::= Rspec : Reserves bandwidth.
 SF1 : Maps Bandwidth to L2-bundle (cells).
 LABEL SET:
 `<Label>` = `<Channel offset + Slot offset`.
 6P Request (Receive cells):

```
Resv State: Store "cell label" information
```

6P Response (Source to node B) -> "Source cell label" is mapped to "node B cell label".
End-to-end data transmission with Track forwarding

- Aggregation of cells -> L2-Bundle.
- Each cell is used as implicit label for (G-MPLS).
- <Source/Destination, RPLInstanceID> is used to identify the outgoing Track.
- Incoming cell is labeled (G-MPLS) to outgoing cell at 6top.
- Destination-MAC is set 0xFFFF (broadcast) : Broadcast cells
Next Steps

• Comments and Questions

Thanks!