
Maciek Konstantynowicz
FD.io CSIT Tech Project Lead

FD.io VPP Overview
Technology Benchmarking and Performance

Facilitating Test Driven Development

How to Push Extreme Limits of Performance and Scale 
with Vector Packet Processing Technology

“A feedback loop where all outputs 
of a process are available as 
causal inputs to that process”



Evolution	of	Programmable	Networking
• Many	industries	are	transitioning	to	a	more	dynamic	model	
to	deliver	network	services

• The	great	unsolved	problem	is	how	to	deliver	network	
services	in	this	more	dynamic	environment

• Inordinate	attention	has	been	focused	on	the	non-local	
network	control	plane	(controllers)

• Necessary,	but	insufficient

• There	is	a	giant	gap	in	the	capabilities	that	foster	delivery	of	
dynamic	Data	Plane	Services

fd.io	Foundation 2

Programmable	 Data	Plane

Copy	from	FD.io	VPP	materials:	 https://wiki.fd.io/view/Presentations



FD.io - Fast Data input/output – for Internet Packets and Services
What is it about – continuing the evolution of Computers and Networks:

Computers => Networks => Networks of Computers => Internet of Computers

Networks in Computers => Requires efficient packet processing in Computers

Enabling scalable modular Internet packet services in Computers – routing, bridging and servicing packets

Making Computers be part of the Network, making Computers become a-bigger-helping-of-Internet

Blog: blogs.cisco.com/sp/a-bigger-helping-of-internet-please
FD.io: www.fd.io

Internet
Services



Introducing	Vector	Packet	Processor	- VPP
• VPP	is	a	rapid	packet	processing	development	platform	for	highly	
performing	network	applications.

• It	runs	on	commodity	CPUs	and	leverages	DPDK

• It	creates	a	vector	of	packet	indices	and	processes	them	using	a	
directed	graph	of	nodes	– resulting	in	a	highly	performant	solution.

• Runs	as	a	Linux	user-space	application

• Ships	as	part	of	both	embedded	&	server	products,	in	volume

• Active	development	since	2002

4

Network	IO

Packet	Processing

Data	Plane	Management	 Agent

Bare	Metal/VM/Container

Copy	from	FD.io	VPP	materials:	 https://wiki.fd.io/view/Presentations



• Start	with	the	basics	- Baseline	the	system
• Ensure	repeatibility	and	consistency	of	results
• Minimize	uncertainties	and	errors
• Understand	and	document	the	source	of	uncertaininties	and	errors
• Quantify	the	amounts	of	uncertainty	and	errors

• Apply	baseline	network	device(s)	measurement	practices
• Packet	throughput	across	packet	sizes

• Focus	on	NDR	(non	drop	rate)
• Packet	latency,	latency	variation

Aside:	Benchmarking	VNFs - sounds	basic	and	straightforward.
They	are	expected	to	behave	like	networking	devices	...

RFC	2330

RFC	1242
RFC	2544
RFC	5481
draft-vsperf-bmwg-
vswitch-opnfv

But	…



RFC	1242
RFC	2544
RFC	5481
draft-vsperf-bmwg-
vswitch-opnfv

• Start	with	the	basics	- Baseline	the	system
• Ensure	repeatibility	and	consistency	of	results
• Minimize	uncertainties	and	errors
• Understand	and	document	the	source	of	uncertaininties	and	errors
• Quantify	the	amounts	of	uncertainty	and	errors

• Apply	baseline	 network	device(s)	measurement	 practices
• Packet	throughput	across	packet	sizes

• Focus	on	NDR	(non	drop	rate)
• Packet	latency,	latency	variation

Aside:	Benchmarking	VNFs - sounds	basic	and	straightforward.
They	are	expected	to	behave	like	networking	devices	...

RFC	2330

But	…	VNFs	are	not	physical	devices,	they	are	SW	workloads	on	commodity	servers/CPUs



• They	are	just	a	little	BIT	different	– it’s	all	about	processing	packets
• At	10GE,	64B	frames	can	arrive	at	14.88Mfps	– that’s	67nsec	per	frame.
• With	2GHz	CPU	core	clock	cycle	is	0.5nsec	– that’s	134	clock	cycles	per	frame.
• BUT	it	takes	~70nsec	to	access	memory	– too	slow	for	required	time	budget.

• Efficiency	of	dealing	with	packets	within	the	computer	 is	essential	
• Moving	packets:	receiving	on	physical	interfaces	(NICs)	and	virtual	interfaces	

(VNFs)	=>	Need	optimized	drivers	for	both;	should	not	rely	on	memory	access.
• Processing	packets:	Header	manipulation,	encaps/decaps,	lookups,	classifiers,	

counters	=>	Need	packet	processing	optimized	for	CPU	platforms

• CONCLUSION	- Must	to	pay	attention	to	Computer	efficiency	for	Network	
workloads

• Need	to	measure	(count)	instructions	per	packet	for	useful	work	(IPP)
• Need	to	measure	instructions	per	clock	cycle	(IPC)
• Need	to	monitor	cycles	per	packet	(CPP)

Network	workloads	vs.	compute	workloads

PCIe

CPU Cores

CPU Socket
M
em

ory	Controller
DDR	SDRAM

Memory
Channels

LLC

Core	operations
NIC	packet	operations
NIC	descriptor	 operations

1

rxd
txd

packet

2
3

4

5

6

8
7

9 10

11
12

13

NICs

Need	reliable	telemetry	!!
(with	representative	and	repeatible	

readings)

Not	easy	at	Nx10GE,	Nx40GE	speeds,
but	possible..



FD.io Design Engineering by Benchmarking 
Continuous System Integration and Testing (CSIT)

Develop

Submit	
Patch

Automated	
Testing

Deploy

Fully automated testing infrastructure
§ Covers both programmability and data planes
§ Code breakage and performance degradations identified before patch review
§ Review, commit and release resource protected

Continuous Functional Testing
§ Virtual testbeds with network topologies
§ Continuous verification of functional conformance
§ Highly parallel test execution

Continuous Software and Hardware Benchmarking
§ Server based hardware testbeds
§ Continuous integration process with real hardware verification

§ Server models, CPU models, NIC models

Facilitating Test
Driven Development

More info: https://wiki.fd.io/view/CSIT



• What	it	is	all	about	– CSIT	aspirations
• FD.io	VPP	benchmarking

• VPP	functionality	per	specifications	(RFCs1)
• VPP	performance	and	efficiency	(PPS2,	CPP3)

• Network	data	plane	- throughput	Non-Drop	Rate,	bandwidth,	PPS,	packet	delay
• Network	Control	Plane,	Management	Plane	Interactions	(memory	leaks!)

• Performance	baseline	references	for	HW	+	SW	stack	(PPS2,	CPP3)
• Range	of	deterministic	operation	for	HW	+	SW	stack	(SLA4)

• Provide	testing	platform	and	tools	to	FD.io	VPP	dev	and	user	community
• Automated	 functional	and	performance	tests
• Automated	 telemetry	 feedback	with	conformance,	performance and	efficiency metrics

• Help	to	drive	good	practice	and	engineering	discipline	into	FD.io	VPP	dev	community
• Drive	innovative	optimizations	into	the	source	code	– verify	they	work
• Enable	innovative	functional,	performance	and	efficiency	additions	&	extensions
• Make	progress	faster
• Prevent	unnecessary	code	“harm”

FD.io Continuous Performance Lab
a.k.a. The CSIT Project (Continuous System Integration and Testing)

Legend:
1 RFC	– Request	 For	Comments	 – IETF	Specs	basically
2 PPS	– Packets	Per	Second
3 CPP	– Cycles	Per	Packet	(metric	 of	packet	processing	 efficiency)
4 SLA	– Service	Level	Agreement



CSIT/VPP-v16.06	Report

https://wiki.fd.io/view/CSIT/VPP-16.06_Test_Report

1	Introduction
2	Functional	 tests	description
3	Performance	 tests	description
4	Functional	 tests	environment
5	Performance	 tests	environment
6	Functional	 tests	results
6.1	L2	Bridge-Domain
6.2	L2	Cross-Connect
6.3	Tagging
6.4	VXLAN
6.5	IPv4	Routing
6.6	DHCPv4
6.7	IPv6	Routing
6.8	COP	Address	Security
6.9	GRE	 Tunnel
6.10	LISP
7	Performance	 tests	results
7.1	VPP	Trend	 Graphs	RFC2544:NDR
7.2	VPP	Trend	 Graphs	RFC2544:PDR
7.3	Long	Performance	 Tests	- NDR	 and	PDR	 Search
7.4	Short	 Performance	 Tests	- ref-NDR	Verification

• Testing coverage summary
• L2, IPv4, IPv6
• Tunneling
• Stateless security

• Non Drop Rate Throughput
• 8Mpps to10Mpps per CPU core at 

2.3GHz*
• No HyperThreading

• Improvements since v16.06
• 10Mpps to 12Mpps per CPU core 

at 2.3GHz*
• With HyperThreading gain ~10%

*CPU	core	2.3GHz	– Intel	XEON	E5-2699v3,	https://wiki.fd.io/view/CSIT/CSIT_LF_testbed



• Problem:
• Throughput - test	trials	yielding	non-repeatable	results,	including	RFC2544	tests.

• Resolution	- identify	and	quantify	 system-under-test	bottlenecks
• HW:	NIC,	PCI	lanes,	CPU	sockets,	Memory	channels.

• Operate	within	their	deterministically	working	limits	- make	sure	they	are	not	DUTs	:)
• Intelligent	CPUs	– control	their	“intelligence”	!

• OS:	kernel	modules	interferring	with	tests	by	using	shared	resources	e.g.	CPU	cores
• Isolate	CPUs,	avoid	putting	DUT	workloads	on	non-isolated	cores.
• Still	kernel	is	interferring	-more	on	this	later.

• VM	environment:
• Hypervisor	entries/exits:	hard	to	track	the	impact,	but	not	impossible,	just	labour	intensive	- combinatorial	explosion	of	

things	to	test	doesn't	help	!

• Adjust	testing	methodologies
• RFC2544	binary	search	start/stop	criteria	– LowRate-to-HighRate,	HighRate-to-LowRate.
• Linear	throughput,	packet	loss	scans.

Measurement	problems	encountered	…
The	learning	curve

Not	basic	and	straightforward	at	all

Need	to	apply	knowledge	 of	the	overall	system	– know	your	
complete	 Hardware	 and	Software	stack	(cross-disciplinary).



• Problem:
• Packet	latency	and	latency	variation vary	greatly	across	tested	VNF	systems.
• Min/max/avg	 latency	and	latency	variation	 (jitter)	measurements	 not	enough;	they	hide	periodic	 latency	

spikes,	and	packet	latency	patterns.
• Lack	of	tools	to	measure	 and	report	per	packet	latency	under	 throughput	load.

• Resolution	(work	in	progress)
• In	discussion	with	HW	tester	vendors,	but	progress	slow.
• Exploring	 options	for	developing	 own	Software	based	tools	to	address	the	gap

• Doing	it	at	Nx10GE,	nx40GE	is	challenging	but	feasible	J

Measurement	problems	encountered	…
The	learning	curve

Not	basic	and	straightforward	at	all

Need	to	apply	knowledge	 of	the	overall	system	– know	your	
complete	 Hardware	 and	Software	stack	(cross-disciplinary).



• Problem:
• HW	testers	expensive,	 not	flexible,	 not	easy	to	integrate	 into	CI/CD	systems

• Resolution	(work	in	progress)
• Use	Software	based	packet	generators	and	testers
• Challenges:

• Accurate	latency	measurements
• PPS	and	Gbps	scale	- doing	it	at	Nx10GE,	nx40GE	is	challenging	but	feasible	J

Measurement	tools	…
Need	more,	need	better



• Problem:
• Modern	computers/CPUs	provide	 lots	of	telemetry	 data	and	performance	 counters
• Challenge	 – readings	 not	always	repeatible,	 which	ones	do	you	trust

• Resolution	(work	in	progress)
• Work	with	CPU	hardware	vendors	to	interpret	 the	counters
• Drive	development	 of	open-source	SW	tools	for	computer/CPU	performance	 monitoring	and	reporting
• It	can	only	get	better	J

Computer	HW	telemetry	tools	…
Need	more,	need	better



• Address	per	packet	latency	and	latency	variation	measurements

• Automate	detection	of	packet	throughput	and	latency	inconsistencies

• Work	with	community	and	vendors	on	improving	network-centric	telemetry	tools	for	
computers/CPUs
• Counters	accuracy
• Reporting	clarity
• Measurements	 repeatibility

• Work	with	IETF	ippm	and	bmwg	on	standardizing	best	practices	of	automated	vNF	benchmarking
• Describing	the	tests	using	data	model	language	(YANG)	is	really	really	cool!
• Key	for	driving	standardized	test	automation

To	Dos



Q&A


