
Revisiting Benchmarking Methodology for Interconnect Devices (Talk originally presented at the ANRW 2016)

**Daniel Raumer,** Sebastian Gallemüller, Florian Wohlfart, Paul Emmerich, Patrick Werneck, and Georg Carle

July 20, 2016



Tur Uhrenturm

# ТЛ

#### Contents

Case study: benchmarking software routers

Flaws of benchmarks

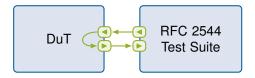
Latency metrics

Latency under load

Traffic pattern

Omitted tests

Reproducibility


Conclusion

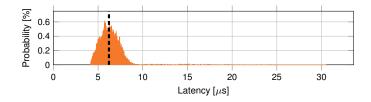
# Why to revisit benchmarking state of the art?

- · Numerous standards, recommendations, best practices
  - Well-known benchmarking definition RFC 2544 (from 1999)
  - · Various extensions
  - Divergence of benchmarks
- · New class of devices
  - · High speed network IO frameworks
  - · Virtual switching
  - · Many core CPU architectures:



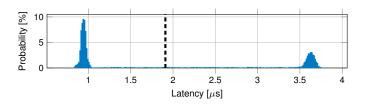
## Case study: RFC 2544 benchmarks




Three different DuTs

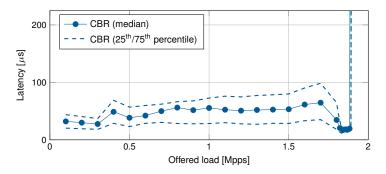
- Linux router
- FreeBSD router
- MikroTik router




# Flaws of benchmarks: selected examples

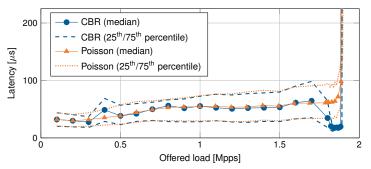
#### Meaningful latency measurements: case study




- FreeBSD, 64-byte packets
- Average does not reflect long tail distribution

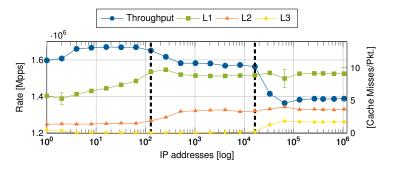
#### Meaningful latency measurements: 2nd example




- Pica8 switch tested in [IFIP NETWORKING 16]
- · Different processing paths through a device
- Bimodal distribution
- Average latency is misleading
- $\rightarrow$  Extensive reports: histograms for visualization
- $\rightarrow$  Short reports: percentiles (25th, 50th, 75th, 95th, 99th, and 99.9th)

#### Latency under load




- Open vSwitch (Linux NAPI & ixgbe) [IMC15]
- · Latency at maximum throughput is not worst case
- $\rightarrow$  Measurements at different loads (10, 20, ..., 100% max. throughput)

#### Traffic pattern & latency



- Open vSwitch (NAPI + ixgbe) [IMC15]
- · Different behavior for different traffic patterns
- ightarrow Tests with different traffic patterns
- ightarrow Poisson process to approximate real world traffic

#### Omitted tests



- · CPU caches affect the performance
- $\rightarrow$  Additional tests for certain device classes
- → Functionality dependent tests

# Reproducibility of configurations

- Manual device configuration is error prone
- · Device configuration is hard to reproduce
- $\rightarrow$  Reproducible configuration of DuT via scripts
- $\rightarrow\,$  Configuration scripts executed by benchmarking tool

## Conclusion

- · Novel class of devices requires additional tests
- · There are arguments for reconsidering best practice:
  - Average latency may be misleading
    - $\rightarrow$  Histograms / percentiles
  - · Latency is load dependent
    - $\rightarrow$  Measure 10, 20, ..., 100% of max. throughput
  - CBR traffic is a unrealistic test pattern
    - $\rightarrow$  Poisson process
  - · Device specific functionality
    - $\rightarrow$  Perform device specific benchmarks;
  - Manual configuration is error prone
    - $\rightarrow$  Automatic configuration by benchmark tool

# Novelty: RFC 2544 test suite on commodity hardware

- MoonGen [IMC15] is a fast software packet generator
- · Hardware-assisted latency measurements (misusing PTP support)
- · Precise software rate control and traffic patterns



- http://net.in.tum.de/pub/router-benchmarking/
- RFC 2544 benchmark reports for Linux, FreeBSD, and MikroTik
- Early version of the MoonGen RFC 2544 module
- Paper: https://irtf.org/anrw/2016/anrw16-final12.pdf