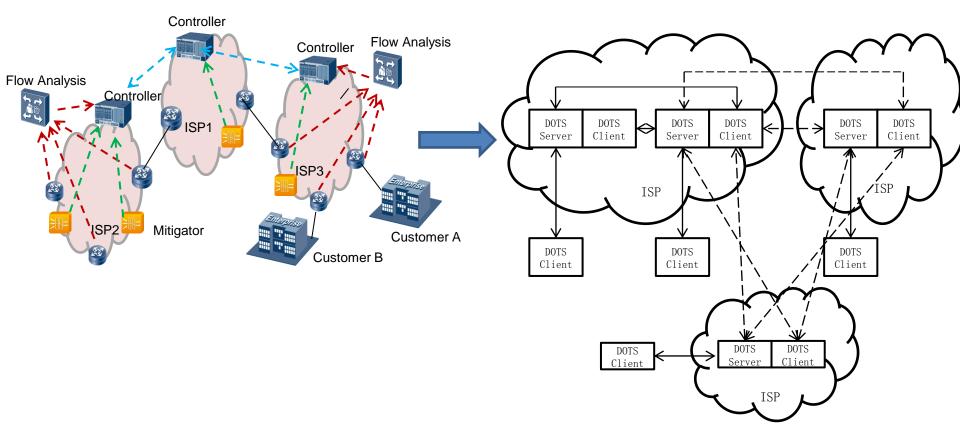
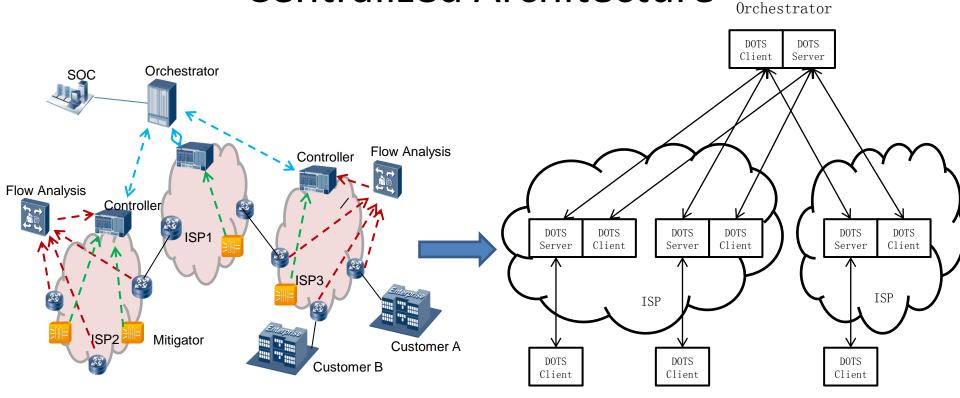
Inter-domain cooperative DDoS protection mechanism draft-nishizuka-dots-inter-domainmechanism-01


Kaname Nishizuka	NTT
Liang Xia	Huawei
Jinwei Xia	Huawei
DaCheng Zhang	Alibaba
Luyuan Fang	Microsoft
Christopher Gray	Comcast
Rich Compton	Charter

July 2016 Berlin

From -00 to -01


- 1. Add contents to explain the protocol and signaling messages specification applies both intra-domain and inter-domain situations;
- 2. Restructuring the contents of Cooperative DDoS Protection Requirements
 - Provisioning Requirements: registering messages for Automatic Provisioning;
 - Coordination Requirements: mitigation request, status exchange, near source mitigation for inter-domain attacks;
 - Returning Path Requirements: routing loops prevention.
- 3. Redesign DOTS signaling messages and their detailed attributes, as well as the protocol operations;
- 4. A lot of editorial text changes;
- 5. New co-authors from Comcast and Charter.

Distributed Architecture

- Peer-to-peer coordination;
- customer<->DOTS client, ISP controller<->DOTS server + DOTS client;
- The inter-domain coordination can be a repeated process;
- A straightforward and simple solution for the DDoS protection cooperation among small number of ISPs:
 - ✓ The incomplete information may not lead to the most optimized operation;
 - \checkmark Configurations become more complex and error prone as the number of ISPs increases;
 - ✓ By repeated coordination among multiple ISPs, It may take a long time to enforce the mitigation.

Centralized Architecture

- the centralized orchestrator is the core component to the inter-domain system;
- customer<->DOTS client, ISP controller<->DOTS server + DOTS client, orchestrator<->DOTS server + DOTS client;
- The inter-domain coordination is bridged by the orchestrator;
- Comparing to distributed architecture:
 - \checkmark The orchestrator has the HA problem;
 - ✓ Centralized way facilitates the automatic provisioning of DDoS protection resource and comprehensive information for overall optimized mitigation;
 - ✓ Direct communication with orchestrator guarantees quick and fixed DDoS response time.

Inter-domain DDoS Protocol

- Secure channel (signaling, data):
 - Requirements: confidentiality, integrity and replay attack protection;
 - Mutual authentication: bidirectional certificate authentication ([ITU-T X.509]), unidirectional certificate authentication on the DOTS server, bidirectional digital signature authentication;
 - Solution in this draft: https + JSON;
- Specification for protocol and messages (no difference for all architectures):
 - Provisioning stage
 - Signaling stage
 - heartbeat message:

Provisioning Stage Protocol

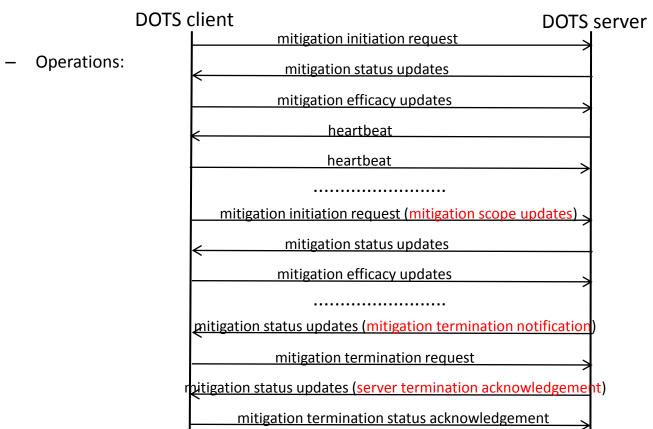
- Registration process: facilitate the auto-discovery and capacity negotiation between the DOTS client and server;
 - Messages over DOTS data channel (TLS transport is recommended): registration, registration response, registration cancelling, registration cancelling response;
 - Operations: The DOTS client registers (or cancels registration) to the DOTS registration body:

"customer_name": string; "ip version": string; "protected zone": { "index": number: "need_alias": string; "ipv4 CIDR": string; "ipv6 address": string; "BGP route": string; "SIP URI": string; "E164 number": string; "DNS name": string; "protected port": string; "protected protocol": string; "countermeasures": string: "tunnel_information": string; "next hop": string; "security profile": { "TLS": string; "DTLS": string; "CoAP": string; "white list": { "name": string; "sequence number": string; "source ip": string; "destination_ip": string; "source port": string; "destination port": string; "protocol": string: "length": string; "TTL": string; "DSCP": number:

"ip_flags": number; "tcp_flags": number; "black_list": {
 "name": string;
 "sequence_number": string;
 "destination_ip": string;
 "destination_port": string;
 "destination_port": string;
 "protocol": string;
 "length": string;
 "TTL": string;
 "DSCP": number;
 "ip_flags": number;
 "tcp_flags": number;

registration response body:

"customer_name": string; "customer_id": string; "alias_of_mitigation_address": { "index": number; "alias": string;


"security_profile": string; "access_token": string; "thresholds_bps": number; "thresholds_pps": number; "duration": number; "capable_attack_type": string; "registration_time": string; "mitigation_status": string; registration cancelling body:
{
 "customer_id": string;
 "reasons": string;
}
registration cancelling response body:
{
 "customer_id": string;
 "result": string;
}

The DOTS server indicates the result of processing the POST request using HTTP response codes:

- Success: Response code 200 (OK) ;
- Fail: Response code 400 (Bad Request) or Response code 500 (Invalid query) with: "error_reason": number;
 - 0: Bad Request;
 1: Invalid Query;
 2: Server Error;
 3: Protected Zone Confliction;
 4: Countermeasure Not Supported;
 5: Security Profile Not Supported;
 6: Confliction Exists for White-list or Black-list;
 - 255: Others;

Signaling Stage Protocol

- During DDoS attack: mitigation service request and status exchange over DOTS signaling channel under link saturation;
 - Messages (asynchronous):
 - DOTS client to server: mitigation initiation request, mitigation efficacy updates, mitigation termination request, mitigation termination status acknowledgement, heartbeat;
 - DOTS server to client: mitigation status updates, heartbeat.

Signaling Stage Protocol

DOTS client to server

mitigation request body:

"version": string; "type": string; "alert_id": string; "sender_id": string; "sender asn": string; "mitigation action": number: "lifetime": number; "max bandwidth": number: "packet header": { 'dst_ip": string; "alias": string; "dst_ports": string; "src ips": string; "src ports": string; "protocols": string; "tcp_flags": string; "fragment": string; "pkt_len": string; "icmp type": string; "icmp_code": string; "DSCP": string; "TTL": string; 'current throughputs": { "bps": string; "pps": string; "peak throughputs": { "bps": string; "pps": string; "average _throughputs": { "bps": string; "pps": string;

"info": {
 "attack_types": string;
 "started": number;
 "ongoing": number;
 "severity": number;
 "direction": number;
 "health": number;

mitigation efficacy updates body:

"version": string; "alert_id": string; "sender_id": string; "sender_asn": string; "attack_status": string; "health": number;

mitigation termination request body:

{ "version": string; "alert_id": string; "sender_id": string; "sender_asn": string;

mitigation termination status acknowledgement body:

"version": string; "alert_id": string; "sender_id": string; "sender_asn": string;

DOTS server to client

mitigation status updates body:

"version": string; "alert id": string; "sender id": string; "sender asn": string; "status": number; "error reason": number; "lifetime": number: "source ports": string; "destination ports": string; "source ips": string; "destination ip": string; "TCP flags": string; "start time": number; "end time": number; "forwarded total packets": number; "forwarded total bits": number; "forwarded peak pps": number; "forwarded peak bps": number; "forwarded_average_pps": number; "forwarded_average_pps": number; "malicious_total_packets": number; "malicious_total_bits": number; "malicious peak pps": number; "malicious peak bps": number; "malicious average pps": number; "malicious average bps": number; "record time": string:

heartbeat body

"version": string; "sender_id": string; "sender_asn": string;

heartbeat body ...

Next Steps

• Comments are welcome

- Keep on improving, including:
 - More details about DOTS messages specification, and the protocol operation process;
 - More descriptions about secure channel (authentication, authorization, privacy), transport mechanism.

Thanks!

Liang Xia (Frank)