
Secondary

Certificates

1

Server Certificate

C S
C S

CERTIFICATE_REQUEST

CERTIFICATE

CERTIFICATE_PROOF

Request (HEADERS…)

CERTIFICATE_NEEDED

USE_CERTIFICATE

Stream N Stream 0

2

Client Certificate

C S
C S

CERTIFICATE_REQUEST

CERTIFICATE

CERTIFICATE_PROOF

Request (HEADERS…)

CERTIFICATE_NEEDED

USE_CERTIFICATE

Response (HEADERS…)

Stream N Stream 0

3

Why do certs in HTTP?

 Multiplexing and TLS

 TLS: One server identity, one client identity

 Unless this changes…?

 HTTP: Many requests, possibly distinct identities

 Multiplexing and client certs

 HTTP/2 prohibits renegotiation

 Even if it didn’t, most TLS 1.2 implementations can’t do

renegotiation while application data flows

 TLS 1.3 might improve this

 Still have to bind HTTP requests and TLS CertificateRequests

 Multiplexing and server certs

 HTTP/2 connection coalescing only works if the server cert

has all possible names

 Forces servers to use mega-certs 4

Changes since Buenos Aires

 Merged client and server drafts, per WG feedback

 Permit unsolicited offers of certificates

 Helps the AUTOMATIC_USE case substantially

 Requires declaring acceptable signature methods in
SETTINGS

 Certificates can include “supporting data”

 OCSP

 Signed Certificate Timestamp

 Possible future application: DNSSec for TLSA, A, AAAA,
etc. records

 Call for Adoption

5

Key critiques

 Memory explosion – have to persist certificates forever!

 Might be good to allow a peer to indicate it has

“forgotten” a certificate

 Not everything is a cert!

 PSK, etc.

 Can be made to look cert-like, or could add a credential-

type field

 Client/server symmetry is overkill!

 Insufficient binding of proof to certificate!

 Defer to our crypto brethren to make this better

 Clients shouldn’t have to pick between AUTOMATIC_USE

and losing 1 RTT!

 Allow unsolicited USE_CERTIFICATE?

 Departs further from the TLS semantics 6

Biggest Critique

 Currently uses a 32-bit HTTP/2 SETTINGS value to

convey signature methods and supplemental data types

 16-bit bitmask for each

 Missing way to convey other properties, like supported

certificate types

 Severely constrains future expansion and

experimentation

 Requires re-defining all currently-interesting values into

a new registry

 Why can’t we just use the values TLS has

already defined for such things?

7

Because RFC 7540 said so!

8

EXTENDED_SETTINGS

9

Enough for everyone?

 Some uses need much more than 32 bits

 Certificates would ideally use an array of

HashAndSignatureAlgorithm values from the TLS registry

 Also should convey acceptable certificate types

 Some uses need fewer than 32 bits, or none:

 Is anyone actually using a 4GB HPACK header table?

 SETTINGS_ENABLE_PUSH: “Any value other than 0 or 1

MUST be treated as a connection error of type

PROTOCOL_ERROR.”

 draft-kerwin-http2-encoded-data: “Any value other than 0

or 1 MUST be treated as a connection error of type

PROTOCOL_ERROR.”

 Others?

 Exactly 32 bits is too constrained
10

Payload layout

SETTINGS EXTENDED_SETTINGS

11

Identifier (16)

Value (32)

Identifier (16)

Contents (?) …

Length (16)

EXTENDED_SETTINGS vs.

vanilla SETTINGS
 Borrows heavily from RFC7540 SETTINGS text

 Values are length-prefixed blobs

 Currently static 16-bit length; could do something variable if
desired

 ACK works differently:

 Sender of EXTENDED_SETTINGS sets flag if ACK is desired

 Recipient sends back EXTENDED_SETTINGS_ACK listing the
values which it understood from the EXTENDED_SETTINGS
frame

 If it received the frame, but didn’t understand any of the values,
the ACK is sent but empty

 Never-seen is a different value than zero

 Implicitly true in SETTINGS as well; RFC 7540 defines some
initial values which can’t be expressed on the wire.

 Possible future optimization for Boolean values

 Reserve a bit somewhere, use if length=0
12

Should we do this?

 Subjectively better than using the current bitmask

approach

 Strictly better than defining a CERT_SETTINGS frame

purely for the certificates draft

 Negligible improvement in chattiness for small things to

migrate

 Even worse if only 1-2 things ever use it and you’re

sending EXTENDED_SETTINGS only for one flag

13

