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Verus design	goals

1. Track	fast	channel	changes
2. Balance	throughput	and	delay
3. Provide	fairness	between	competing	flows

• Verus uses	delay	feedback
– Changes	only	done	at	the	end	nodes
– Proactively	avoid	congestion
– Small	signaling	overhead



Verus design

• No	channel	prediction/modeling	

• Build	on	TCP	concepts:
– Use	slow	start
– Use	Multiplicative	Decrease	(MD)	on	packet	loss
– Replace	Additive	Increase	(AI)	with	a	step	based	
increase/decrease



Verus in	a	nutshell

• Learns	the	delay	profile	of	the	network
– Reflects	the	relationship	between	delay	and	sending	window
– Represented	as	a	curve	and	re-built	every	1	second

• Decide	how	many	packets	to	send	over	5	ms epochs

• Enforces	a	delay	estimate	based	on	the	delay	profile
– With	a	step-based	increase/decrease
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Delay	curve	concept

• A	way	to	track	network	
changes	

• Reflects	relationship	
between	sending	window	
and	network	delay

• Verus dynamically	learns	
the	network	state
– Through	delay	feedback	
(ACKs)



Tracking	fast	channel	changes

After	100	seconds

Slow	start:	
- Every	ACK:	add	a	point	
(W,	delay)

Build	delay	curve:	
- Cubic	spline	interpolation

Verus control	loop:
- every	epoch	5	ms

Rebuild	delay	curve:
- every	1	second



Tracking	fast	channel	changes

Every	5	sec:
Link:	10-100	Mbps
Round	 trip	time:	10-100	ms



Trade-off	between	throughput	&	delay
Tuning	parameter	(R) defines	the	ratio	between	max	and	min	network	delay

Experiments	over	real	LTE	network:
• Stationary	scenario
• 3	phones	each	running	3	flows
• Repeated	5	times	each

R	can	be	set	based	on	the	
application	requirements



Verus implementations
• Native	Verus over	UDP
– http://yzaki.github.io/verus/

• Verus Sockets	(ongoing)
– As	CC	module	in	UDT	(UDP-based	Data	Transfer)	
http://udt.sourceforge.net/index.html

• As	an	adaptation	layer	over	TCP	Cubic
– https://github.com/yzaki/verus/tree/verus_over_tcp

• As	a	CC	module	within	Quic (Planned)



Verus over	TCP	Cubic



Verus modeling

• Delay	based	CC	protocols	are	not	well	understood
– A	generic	mathematical	description	

• Simplify	the	understanding	of	these	protocols	
• Prove	convergence	and	stability	

• Verus is	modeled	as	a	two-dimensional	discrete-time	
Markov	chain
– Focus	on	highly	fluctuating	networks
– Reflect	properties	of	the	protocol
– Achieve	similar	performance
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