
Adaptive	Congestion	Control	for	
Unpredictable	Cellular	Networks

Yasir Zaki
New	York	University	Abu	Dhabi	(NYUAD)



Verus design	goals

1. Track	fast	channel	changes
2. Balance	throughput	and	delay
3. Provide	fairness	between	competing	flows

• Verus uses	delay	feedback
– Changes	only	done	at	the	end	nodes
– Proactively	avoid	congestion
– Small	signaling	overhead



Verus design

• No	channel	prediction/modeling	

• Build	on	TCP	concepts:
– Use	slow	start
– Use	Multiplicative	Decrease	(MD)	on	packet	loss
– Replace	Additive	Increase	(AI)	with	a	step	based	
increase/decrease



Verus in	a	nutshell

• Learns	the	delay	profile	of	the	network
– Reflects	the	relationship	between	delay	and	sending	window
– Represented	as	a	curve	and	re-built	every	1	second

• Decide	how	many	packets	to	send	over	5	ms epochs

• Enforces	a	delay	estimate	based	on	the	delay	profile
– With	a	step-based	increase/decrease

Delay	curve

Estimated	delay	(Dest)

±



Delay	curve	concept

• A	way	to	track	network	
changes	

• Reflects	relationship	
between	sending	window	
and	network	delay

• Verus dynamically	learns	
the	network	state
– Through	delay	feedback	
(ACKs)



Tracking	fast	channel	changes

After	100	seconds

Slow	start:	
- Every	ACK:	add	a	point	
(W,	delay)

Build	delay	curve:	
- Cubic	spline	interpolation

Verus control	loop:
- every	epoch	5	ms

Rebuild	delay	curve:
- every	1	second



Tracking	fast	channel	changes

Every	5	sec:
Link:	10-100	Mbps
Round	 trip	time:	10-100	ms



Trade-off	between	throughput	&	delay
Tuning	parameter	(R) defines	the	ratio	between	max	and	min	network	delay

Experiments	over	real	LTE	network:
• Stationary	scenario
• 3	phones	each	running	3	flows
• Repeated	5	times	each

R	can	be	set	based	on	the	
application	requirements



Verus implementations
• Native	Verus over	UDP
– http://yzaki.github.io/verus/

• Verus Sockets	(ongoing)
– As	CC	module	in	UDT	(UDP-based	Data	Transfer)	
http://udt.sourceforge.net/index.html

• As	an	adaptation	layer	over	TCP	Cubic
– https://github.com/yzaki/verus/tree/verus_over_tcp

• As	a	CC	module	within	Quic (Planned)



Verus over	TCP	Cubic



Verus modeling

• Delay	based	CC	protocols	are	not	well	understood
– A	generic	mathematical	description	

• Simplify	the	understanding	of	these	protocols	
• Prove	convergence	and	stability	

• Verus is	modeled	as	a	two-dimensional	discrete-time	
Markov	chain
– Focus	on	highly	fluctuating	networks
– Reflect	properties	of	the	protocol
– Achieve	similar	performance

11/20


