Survey on IP-based Vehicular Networking for Intelligent Transportation Systems draft-jeong-its-vehicular-networking-survey-01

Jaehoon (Paul) Jeong^{*}, Sandra Cespedes, Nabil Benamar, and Jerome Haerri ^{*}Editor E-mail Address: pauljeong@skku.edu

Introduction to Vehicular Networking 、

- Objective of this Draft
 - To survey the research activities of IP-based vehicular networks for Intelligent Transportation Systems (ITS).
- Assumptions for Vehicular Networks
 - IEEE 802.11p is considered as MAC protocol.
 - IPv6 is considered as a Network-layer protocol.
 - Road-Side Unit (RSU) is connected to the Internet as an access point for vehicles.
 - Traffic Control Center (TCC) is a central node for managing vehicular networks as vehicular cloud.

Categories for Vehicular Networking

1. IP Address Autoconfiguration

- 2. Vehicular Network Architecture
- 3. Vehicular Network Routing
- 4. Mobility Management in Vehicular Networks

IP Address Autoconfiguration (1/2)

- Automatic IP Address Configuration in VANETs [1]
 A distributed dynamic host configuration (DHCP) with a cluster leader as a DHCP server.
- Routing and Address Assignment using Lane/Position Information in a VANET [2]
 - Each lane of a road segment has a unique IPv6 prefix for IPv6 SLAAC.
 - A connected VANET is constructed per lane as a cluster.
- GeoSAC: Scalable Address Autoconfiguration for VANET Using Geographic Net Concepts [3]
 - A link is defined as a geographic area having a connected VANET for multicast.
 - Ad Hoc routing is performed to support such a multicast link for IPv6 SLAAC for an RA from an RSU.

IP Address Autoconfiguration (2/2)

Key Observations

- High-speed mobility should be considered for a light-overhead address autoconfiguration.
 - A cluster leader can have an IPv6 prefix [1].
 - Each lane in a road segment can have an IPv6 prefix [2].
 - A geographic region under the communication range of an RSU can have an IPv6 prefix [3].
- IPv6 Neighbor Discovery (ND) should be extended to support the concept of a link for an IPv6 prefix in terms of multicast.
 - Ad Hoc routing is required for the multicast in a connected VANET with the same IPv6 prefix [3].
 - A rapid Duplicate Address Detection (DAD) should be supported to prevent or reduce IPv6 address conflicts.

Vehicular Network Architecture (1/3)

- VIP-WAVE: On the Feasibility of IP Communications in 802.11p Vehicular Networks [4]
 - VIP-WAVE provides three schemes:
 - An efficient mechanism for the IPv6 address assignment and DAD,
 - On-demand IP mobility based on Proxy Mobile IPv6 (PMIPv6), and
 - one-hop and two-hop communications for I2V and V2I networking.
- IPv6 Operation for WAVE Wireless Access in Vehicular Environments [5]
 - IEEE 1609.3 minimizes IPv6 operation over WAVE.
 - IPv6 Neighbor Discovery is not recommended.
 - IPv6 link model does not hold in WAVE.
 - Unidirectional links in WAVE may exist due to interference and different Tx power levels.
 - Interfaces with the same prefix may not on the same IP link due to node mobility and highly dynamic topology.

Vehicular Network Architecture (2/3)

- A Framework for IP and non-IP Multicast Services for Vehicular Networks [6]
 - Distributed mechanism allowing to configure a common multicast address: Geographic Multicast Address Autoconfiguration (GMAA), without signaling.
- Joint IP Networking and Radio Architecture for Vehicular Networks
 [7]
 - Three classes of nodes may define all required IP ITS topologies corresponding to direct V2V communication, range extension V2V (REV), and V2I communications.
 - VANET ITS interference may be controlled by separating each WiFi/ITS-G5 channel as IP subnetworks and advertising them through range extension nodes using REV.
- Mobile Internet Access in FleetNet [8]
 - Re-introduction of a foreign agent (FA) in MIP located at the IGW, so that the IP-tunneling can remain in the back-end, not on the air.
- A Layered Architecture for Vehicular Delay-Tolerant Networks [9]
 DTN Bundle Layer between L2 and L3 to keep it transparent to IP.

Vehicular Network Architecture (3/3)

Key Observations – Unidirectional links exist and must be considered.

- Control Plane must be separated from Data Plane.
- ID/Pseudonym change requires a lightweight DAD.
- IP tunneling should be avoided.
- Vehicles do not have a Home Network.
- Protocol-based mobility must be kept hidden to both the vehicle and the correspondent node (CN).
- An ITS architecture may be composed of three types of nodes: Leaf Nodes, Range Extension, and Internet Vehicle.

Vehicular Network Routing (1/3)

- Different routing protocols categories in VANET.
 Geocast/position/broadcast/cluster-based ad hoc routing.
- An IP Passing Protocol for Vehicular Ad Hoc Networks with Network Fragmentation [10]
 - It tackled the issue of network fragmentation in VANET environments.
 - It can postpone the time to release IP addresses to the DHCP server and select a faster way to get the vehicle's new IP address.

Vehicular Network Routing (2/3)

- Experimental Evaluation for IPv6 over VANET Geographic Routing [11].
 - It proposes a combination of IPv6 networking and a Car-to-Car Network routing protocol (C2C Net) of the Car2Car Communication Consortium.
 - C2CNet is an architecture using a geographic routing.
 - The combination of **IPv6 multicast** and **GeoBroadcast** was implemented.
 - The test results show that IPv6 over C2CNet does not have too much delay (less than 4ms with a single hop) and is feasible for vehicular communication.
 - In the outdoor testbed, they developed AnaVANET to enable hop-by-hop performance measurement and position trace of the vehicles.

Vehicular Network Routing (3/3)

- Key Observations
 - IP address autoconfiguration should be manipulated to support the efficient networking.
 - Due to **network fragmentation**, vehicles cannot communicate with each other temporarily.
 - **IPv6 Neighbor Discovery (ND)** should consider the temporary network fragmentation.
 - IPv6 link concept can be supported by Geographic routing to connect vehicles with the same IPv6 prefix.

Mobility Management in Vehicular Net (1/3)

- A Hybrid Centralized-Distributed Mobility Management [12][13]
 - Hybrid centralized-distributed mobility management (DMM + PMIPv6)
 - A vehicle obtains a prefix from the mobile access router through DMM and another prefix from the PMIPv6 domain.
- NEMO-Enabled Localized Mobility Support for Internet Access in Automotive Scenarios [14]
 - It enables IP mobility for moving networks in a network-based mobility scheme based on PMIPv6.
 - The functionality of the MAG is extended to the mobile router.
- Network Mobility Protocol for Vehicular Ad Hoc Networks [15]
 - Using a NEMO-Based protocol, vehicles acquire IP addresses from other vehicles through V2V communications in highway scenarios.
 - Cars on the same or opposite lane are entitled to assist the vehicle to perform a pre-handoff.

Mobility Management in Vehicular Net (2/3)

- Performance Analysis of PMIPv6-Based Network MObility for Intelligent Transportation Systems [16]
 - It adapts PMIPv6 to enable IP mobility for the moving network, instead of a single node as in the standard PMIPv6.
 - It adopts the fast handover approach standardized for PMIPv6 in [RFC5949].
- A Novel Mobility Management Scheme for Integration of Vehicular Ad Hoc Networks and Fixed IP Networks [17]
 - It uses information provided by vehicular networks to reduce mobility management overhead.
- SDN-based Distributed Mobility Management for 5G Networks [18]
 - Hybrid PMIP-DMM is used, where mobility functions are located in Open Flow Switches (data plane).
 - One or more SDN controllers handle the Control plane.

Mobility Management in Vehicular Net (3/3)

- Key Observations
 - Mobility Management (MM) solution design varies, depending on scenarios: highway vs. urban
 - Hybrid schemes (NEMO + PMIP, PMIP + DMM, etc.) usually show better performance than pure schemes.
 - Most schemes assume that IP address configuration is already set up.
 - Most schemes have been tested only at either simulation or analytical level.
 - SDN can be considered as a player in the MM solution.

Summary and Analysis (1/3)

- Fitness of IPv6 over WAVE
 - IPv6-based vehicular networking can be well-aligned with IEEE WAVE standards for various vehicular network applications,
 - such as driving safety, efficient driving, and infotainment.
- IPv6 ND Adaption
 - The IEEE WAVE standards do not recommend to use the IPv6 neighbor discovery (ND) protocol for the communication efficiency under high-speed mobility.
 - It is necessary to adapt the ND for vehicular networks with such high-speed mobility such that ND can operate rapidly with little overhead.

Summary and Analysis (2/3)

- Support of IPv6 Link Concept
 - The concept of a link in IPv6 does not match that of a link in VANET.
 - This is caused by the physical separation of communication range in a connected VANET.
 - The IPv6 ND should be extended to support this multi-link subnet of a connected VANET through either ND proxy or VANET routing.
- IP Address Autoconfiguration
 - In mobility management, a vehicle's IP address should be updated/configured proactively along its movement via the vehicular cloud.
 - DAD for unique IP addresses can be performed by the infrastructure rather than a vehicle.

Summary and Analysis (3/3)

- Routing and Mobility Management using Vehicle Trajectory
 - Most of vehicles are equipped with a GPS navigator as a dedicated navigation system or a smartphone App.
 - With this GPS navigator, vehicles can share their current position and trajectory (i.e., navigation path) with TCC.
 - TCC can predict the future positions of the vehicles with their mobility information (i.e., the current position, speed, direction, and trajectory).
 - With the prediction of the vehicle mobility, TCC supports RSUs to perform data packet routing and handover proactively.

Next Steps for Survey Draft

- Enhancement of Security and Privacy Considerations
 - The use of TLS certificates for vehicle communications
 - Privacy considerations by a new ETSI activity (e.g., in-vehicle device's identifier generation)
- Inclusion of More Relevant Papers

 Inclusion of Industry Activities for Vehicular Networking

References (1/2)

[1] Fazio, M., Palazzi, C., Das, S., and M. Gerla, "Automatic IP Address Configuration in VANETs", ACM International Workshop on Vehicular Inter-Networking, September 2016.

[2] Kato, T., Kadowaki, K., Koita, T., and K. Sato, "Routing and Address Assignment using Lane/Position Information in a Vehicular Ad-hoc Network", IEEE Asia-Pacific Services Computing Conference, December 2008.

[3] Baldessari, R., Bernardos, C., and M. Calderon, "GeoSAC - Scalable Address Autoconfiguration for VANET Using Geographic Networking Concepts", IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, September 2008.

[4] Cespedes, S., Lu, N., and X. Shen, "VIP-WAVE: On the Feasibility of IP Communications in 802.11p Vehicular Networks", IEEE Transactions on Intelligent Transportation Systems, March 2013.

[5] Baccelli, E., Clausen, T., and R. Wakikawa, "IPv6 Operation for WAVE - Wireless Access in Vehicular Environments", IEEE Vehicular Networking Conference, December 2010.

[6] Jemaa, I., Shagdar, O., and T. Ernst, "A Framework for IP and non-IP Multicast Services for Vehicular Networks", Third International Conference on the Network of the Future, November 2012.

[7] Petrescu, A., Boc, M., and C. Ibars, "Joint IP Networking and Radio Architecture for Vehicular Networks", 11th International Conference on ITS Telecommunications, August 2011.

[8] Bechler, M., Franz, W., and L. Wolf, "Mobile Internet Access in FleetNet", 13th Fachtagung Kommunikation in verteilten Systemen, February 2001.

[9] Soares, V., Farahmand, F., and J. Rodrigues, "A Layered Architecture for Vehicular Delay-Tolerant Networks", IEEE Symposium on Computers and Communications, July 2009.

[10] Chen, Y., Hsu, C., and W. Yi, "An IP Passing Protocol for Vehicular Ad Hoc Networks with Network Fragmentation", Elsevier Computers & Mathematics with Applications, January 2012.

References (2/2)

[11] Tsukada, M., Jemaa, I., Menouar, H., Zhang, W., Goleva, M., and T. Ernst, "Experimental Evaluation for IPv6 over VANET Geographic Routing", IEEE International Wireless Communications and Mobile Computing Conference, June 2010.

[12] Nguyen, T. and C. Bonnet, "A Hybrid Centralized-Distributed Mobility Management for Supporting Highly Mobile Users", IEEE International Conference on Communications, June 2015.

[13] Nguyen, T. and C. Bonnet, "A Hybrid Centralized-Distributed Mobility Management Architecture for Network Mobility", IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, June 2015.

[14] Soto, I., Bernardos, C., Calderon, M., Banchs, A., and A. Azcorra, "NEMO-Enabled Localized Mobility Support for Internet Access in Automotive Scenarios", IEEE Communications Magazine, May 2009.

[15] Chen, Y., Hsu, C., and C. Cheng, "Network Mobility Protocol for Vehicular Ad Hoc Networks", Wiley International Journal of Communication Systems, November 2014.

[16] Lee, J., Ernst, T., and N. Chilamkurti, "Performance Analysis of PMIPv6-Based Network MObility for Intelligent Transportation Systems", IEEE Transactions on Vehicular Technology, January 2012.

[17] Peng, Y. and J. Chang, "A Novel Mobility Management Scheme for Integration of Vehicular Ad Hoc Networks and Fixed IP Networks", Springer Mobile Networks and Applications, February 2010.

[18] Nguyen, T., Bonnet, C., and J. Harri, "SDN-based Distributed Mobility Management for 5G Networks", IEEE Wireless Communications and Networking Conference, April 2016.

[19] Cespedes, S., Shen, X., and C. Lazo, "IP Mobility Management for Vehicular Communication Networks: Challenges and Solutions", IEEE Communications Magazine, May 2011.

[20] Moustafa, H., Bourdon, G., and Y. Gourhant, "Providing Authentication and Access Control in Vehicular Network Environment", IFIP TC-11 International Information Security Conference, May 2006.