Transmission of IPv6 Packets over IEEE 802.11 OCB Networks

draft-ernst-its-ipv6-over-80211ocb-00.txt draft-lee-its-ipv6-over-80211ocb-00.txt

Thierry Ernst, Alex Petrescu (speaker), Jong-Hyouk Lee

Acknowledgements:

Albin Severinson, Marios Makassikis, Michelle Wetterwald, Dick Roy, Robert Moskowitz, Alexey Voronov, José Santa Lozano and "starkj" on itsforge.net

IETF Berlin, July 19th, 2016

Contents of a "IPv6-over-80211 OCB" document at IETF

- The Title
- Maximum Transmission Unit:
 - What is the size of the MTU on 802.11-OCB?
 - How to communicate the MTU between 802.11-OCB nodes?
 - IP or MAC fragmentation?
- Frame format:
 - What is the value of the Ethertype on 802.11-OCB?
 - What is the frame format on 802.11-OCB?
- Interface ID: how to build the Interface ID?
- Address mappings: how to map certain unicast and multicast addresses between 802.11 and IP layers?

Title

- Transmission of IPv6 Packets over IEEE 802.11 Networks Outside the Context of a Basic Service Set
- Transmission of IPv6 Packets over the IEEE 802.11p OCB Mode
- Transmission of IPv6 Packets over IEEE 802.11-OCB Networks

Maximum Transmission Unit size

- Currently MTU for 802.11-OCB == 1500 bytes as wired Ethernet
- ETSI CAM specifications are not TLV but ASN.1 "containers"/"matrioska" no size limit
- 802.11-OCB can transmit >1500byte MTU
- 802.11-OCB MTU is 2308 bytes [RR] = Should we use this MTU?
- Size of common packets captured on 802.11-OCB:
 - WSMP (non IPv6):
 - Unsigned BSM 171 bytes
 - Signed BSM 335 bytes
 - SPAT 350 bytes
 - MAP 663 bytes
 - CAM (non IPv6):
 - At ITS Congress demo: 108 and 524 bytes
 - At GCDC 2016 demo: 102 bytes
 - IPv6:
 - CAM 'heresy' as UDP/IPv6 payload: 76 bytes
 - RA: 125 bytes
- MTU bigger than 1500bytes may be useful for:
 - List of Points of Interest (POI) advertised by Road-Side Units
 - Multiple authentication signatures added to large messages
- Determine the real MTU:
 - PMTUD open source?
 - Algorithm: send an increasing UDP packet until flag "802.11 More Fragments" flips.

Fragmentation

- Not a typical topic in IPv6-over-foo, but seems favorable to include.
- To respect the MTU of 802.11-OCB:
 - IP layer fragments, _and_ MAC layer fragments
 - IP layer does not fragment, MAC layer fragments
 - IP layer fragments, MAC layer does not fragment
 - which one to use and write?

Frame Format

4. Frame Format

IPv6 packets can be transmitted as "IEEE 802.11 Data" or alternatively as "IEEE 802.11 QoS Data":

3 independent sources

IEEE 802.11 Data Logical-Link Control IPv6 Header IEEE 802.11 QoS Data Logical-Link Control ^{1 source} WSMP Header - *if* replaced by IPv6 header

Details	
EEE 802.11 Data, Flags:C	🕀 IEEE 802.11 QoS Data, Flags:C
Type/Subtype: Data (0x0020)	Type/Subtype: QoS Data (0x0028)
E Frame Control Field: 0x0800	⇔ Frame Control Field: 0x8800
10 = Type: Data frame (2)	10 = Type: Data frame (2)
0000 = Subtype: 0	
	⊡-Flags: 0x00
⊞ Flags: 0x00 000 0000 0000 = Duration: 0 microseconds	
Receiver address: IPv6mcast_01 (33:33:00:00:00:01)	0 = Retry: Frame is not being retransmitted
Destination address: IPv6mcast_01 (33:33:00:00:00:01)	
Transmitter address: WistronN_e6:47:99 (30:14:4a:e6:47:99)	
Source address: WistronN_e6:47:99 (30:14:4a:e6:47:99)	
BSS Id: Broadcast (ff:ff:ff:ff:ff:ff)	0 = Order flag: Not strictly ordered
0000 = Fragment number: 0	000 0000 0000 = Duration: 0 microseconds
1110 1100 1001 = Sequence number: 3785	Receiver address: Broadcast (ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:
Frame check sequence: 0xd20e2270 [correct]	Destination address: Broadcast (ff:ff:ff:ff:ff:ff)
[Good: True]	- Transmitter address: 00:cf:8f:90:82:6a (00:cf:8f:90:82:6a)
[Bad: False]	
🕀 Logical-Link Control	BSS Id: Broadcast (ff:ff:ff:ff:ff:ff)
DSAP: SNAP (Øxaa)	- 0001 1100 0010 = Sequence number: 450
	⊖ Frame check sequence: 0xeb02f593 [correct]
	France circle sequence: 0xe0021555 [correct]
⊡ SSAP: SNAP (Øxaa)	[Bad: False]
- 1010 101. = SAP: SNAP	
⊡ Control field: U, func=UI (0x03)	[
000. 00 = Command: Unnumbered Information (0x00)	
Organization Code: Encapsulated Ethernet (0x000000)	
Type: IPv6 (0x86dd)	0000 0000 = TXOP Duration Requested: 0 (no TXOP requested)
⊕ Internet Protocol Version 6, Src: fe80::3214:4aff:fee6:4799, Dst: ff02::1	🖨 Logical-Link Control
User Datagram Protocol, Src Port: 39419 (39419), Dst Port: 50000 (50000)	Ė-DSAP: SNAP (0xaa)
⊕ Data (41 bytes)	-1010 101. = SAP: SNAP
	⊕ SSAP: SNAP (0xaa)
	- 1010 101. = SAP: SNAP
	Landon
	E Control field: U, func=UI (0x03)
	000. 00 = Command: Unnumbered Information (0x00)
	Organization Code: Encapsulated Ethernet (0x000000)
	Type: (WAVE) Short Message Protocol (WSM) (0x88dc)
	🗄 Wave Short Message Protocol(IEEE P1609.3)

Frame Format

- Reasons to use 802.11 Data Headers
 - Most prototypes do
 - Small and fast
- Reasons to use 802.11 QoS Data Headers
 - Map flows of IP data on separate DSRC/ITS-G5 channels
 - IP diffserv may apply
 - draft-ietf-tsvwg-ieee-802-11 proposes mappings of Differentiated Services
 Code Points (DSCP) to 802.11 User Priorities (UP) for Telephony, Multimedia
 Conferencing, Low-Latency Data
 why not DSRC Control Channel?
- Which frame format to use and to write?

Interface ID

- See the 6man Interface ID
- See the privacy MAC addresses

Address Mapping – unicast

• Work under Way.

Address Mapping – multicast

- ff02::1 👝 33-33-0-0-0-1
- ff02::XXXX:XXXX 👝 33-33-XX-XX-XX-XX
- Destination alternatives:
 - 33-33-0-0-0-1
 - ff-ff-ff-ff-ff "broadcast" for IPv4
 - 01-80-C2-00-00-1D reserved by IEEE for ISO/IEC JTC1/SC6 ISO/IEC 9542 as "All Multicast Capable Intermediate Systems Address"
 - 01-00-5E- reserved by IEEE for multicast addresses under IANA
 OUI (they are not Local).
 - 👝 Which one to use?

Address Mapping – multicast

For Link scoped IPv6 multicast addresses:

A Group ID TBD of length 112bits may be requested from IANA; this Group ID signifies "All 802110CB Interfaces Address". Only the least 32 significant bits of this "All 802110CB Interfaces Address" will be mapped to and from a MAC multicast address.

For other than link- and interface- scoped IPv6 multicast addresses:

Application-specific multicast addresses may be requested later for use in vehicular communications use-cases (i.e. "all Uber cars in the street").