CURDLE

Jim Schaad
August Cellars
IETF 96 - Berlin

Preliminary

* Private Key is an OCTET STRING in all cases

* Public Key is an OCTET STRING, however X* and Ed* use different
methods to compute the public from the private

* Requires that private keys be identified for ECDH vs EADSA

* Potential for alternative ECDH algorithms in the future such as ECDH-
MQyv

Private key is a byte string of either 32-bytes or 56-bytes in both cases

Public key is different for X* and Ed* in the following methods:

1. X*isjust the X coordinate while Ed* encodes both the X and the Y coordinates —
although only a sign bit for the X coordinate

2. X* computes public by [private]Base while Ed* uses SHA-512 or SHA256 as part of
the input process

May want to allow for ECDH methods other than straight ECDH, need to make sure
that we understand (and document) what should happen as new ECDH algorithms
are adopted (when and if).

Note: known problems with mgv make it unlikely to be used.
EC-MQV is part of Suite B (still true?)

X25519

X448

Ed25519

Ed25519ph

Ed448

Ed448ph

Curdle PKIX 00

(id-ecPublicKey or id-ecDH) + id-
Curve25519

(id-ecPublicKey or id-ecDH)+ id-
Curved48
id-edDSAPublicKey + ed25519 (1)
id-edDSAPublicKey + ed25519ph (2)

id-edDSAPublicKey + ed448 (3)

id-edDSAPublicKey + ed448ph (4)

id-Curve25519

id-Curved48

id-Curve25519

id-Curve25519ph

id-Curve448

id-Curve448ph

id-ecDH

id-ecDH

id-edDSASignature

id-edDSASignature

id-edDSASignature

id-edDSASignature

Nikos —5/17 — Use OID not enumeration

é@:Nﬂéhm based on RFC5480

[cuve | public Keyd

X25519 (id-ecPublicKey or id-ecDH or id- (id-ecPublicKey or id-ecDH id-ecDH or id-ecMQV
ecMQV) + X25519 or id-MQV) + X25519

X448 (id-ecPublicKey or id-ecDH or id- (id-ecPublicKey or id-ecDH id-ecDH or id-ecMQV
ecMQV)+ X448 or id-MQV) + X448

Ed25519 (id-eePublickey-or id-edDSA) + Ed25519 id-edDSA + Ed25519 id-edDSA

Ed25519ph (id-ecPublickey-or id-edDSA-ph) + id-edDSA-ph + Ed25519 id-edDSA-ph
Ed25519

Ed448 (id-ecPublickey-or id-edDSA) + Ed448 id-edDSA + Ed448 id-edDSA

Ed448ph (id-ecRublickey-or id-edDSA-ph) + id-edDSA-ph + Ed448 id-edDSA-ph
Ed448

Since public and private keys are not totally matched up, need to get rid of the
generic id-ecPublicKey for signatures

If we want to change things to say that cannot use a single key for multiple agorithms
on the ECDH side — can kill id-ecPublicKey in those two rows as well.

David Benjamin Proposal

X25519 id-Curve25519 or id-Curve25519 or id-Curve25519 or
id-Curve25519-HMQV id-Curve25519-HMQV id-Curve25519-HMQV

X448 id-Curve448 or id-Curved48 or id-Curve448 or
id-Curve448-HMQV id-Curve448-HMQV id-Curve448-HMQV

Ed25519 id-Ed25519 id-Ed25519 id-Ed25519

Ed25519ph id-ed25519ph id-ed25519ph id-ed25519ph

Ed448 id-ed448 id-ed448 id-ed448

Ed448ph id-ed448ph id-ed448ph id-ed448ph

Contrast Approaches

* ASN.1 Encoding:
* Algorithm + curve vs Algorithm/Curve + ABSENT

* Publishing/Negotiating Capabilities:
* List of all algorithms or List of all Algorithm/Curve pairs
* Length of list vs Specificity of the list

* Future algorithms:
* Curves may work immediately vs Requires a complete set of OIDs to be issued

* Misuse of curves:
* Requiring algorithms lessens the ability, but still possible

* Conclusion — Use the Benjamin Proposal

| am going to ignore the current document as there does not seem to be a great deal
of support for it.

Based on the ASN.1 encoding, not a great deal to recommend either one. Slightly
favor the second approach due to size

Publishing Capabilities:

» Shorter list if just algorithms

* More likely to affect signatures than ECDH as still need to provide a key

* May assume that algorithms in the list are still ok if list is long enough — shorten to
favorites rather than complete support

* Possible to produce a new OID which is just for negotiation if it looks like it really
needs to exist.

* LDAP searches for algorithm are more complicated as a larger list of algorithms
needs to be done.

Future Algorithms:

* Case of how MQV would be added to the list of algorithms

* Does not work immediately w/o generic curve identifier. Thus does not affect how
signature curves are setup.

Curve Misuse:
* Listing algorithms make misuse more blatant. More likely for id-ecPublicKey than
edDSA keys. Stupid people can still do stupid things

Memory of somebody saying that knowing just the alg w/o the curve is a problem in
some circumstances. — looking at signatures need to go and find the key to know if
you can process it. | am not sure if | feel that this is a real problem as you are going to
have to spend a lot of time dealing with the certificate before you can use it. Not
sure how many instances of — | can’t do this curve — exist in real life.

Private Key

OneAsymmetricKey ::= SEQUENCE { ECPrivateKey ::= SEQUENCE {
version INTEGER version INTEGER,
privateKeyAlgorithm Algorithmidentifier .
privateKey OCTET STRING containing privateKey OCTET STRING,
ECPrivateKey parameters [0] ANY OPTIONAL,

Attributes [0] ATTRIBUTES OPTIONAL,

publicKey [1] BIT STRING OPTIONAL publickey [1] BIT STRING OPTIONAL

DH/DSA ::= INTEGER
RSA ::= RSAPrivateKey

Makes more sense to do what DH does and say — ECPrivateKey is an OCTET STRING?
And just use the OneAsymmetricKey structure as a wrapper (almost the same as
PKCS#8

RFC 5958

Recommendations on sending a public key with the private key? Should we make
one.

Discussions

ASN.1

SubjectPublicKeylnfo {PUBLIC-KEY: I0Set} ::= SEQUENCE {
algorithm Algorithmldentifier {PUBLIC-KEY, {IOSet}},
subjectPublicKey BIT STRING }

PrivateKeyInfo ::= SEQUENCE {

version INTEGER,
privateKeyAlgorithm Algorithmldentifier{PUBLIC-KEY, {...}},
privateKey OCTET STRING,

-- Structure of private key is in PUBLIC-KEY.&PrivateKey
attributes [0] IMPLICIT Attributes OPTIONAL}

