

1

draft-gomez-lpwan-fragmentationheader-02

Carles Gomez (UPC/i2cat) Josep Paradells (UPC/i2cat) Jon Crowcroft (University of Cambridge)

LPWAN@IETF96

With the support of Ministerio de Educación, Cultura y Deporte, through the José Castillejo grant CAS15/00336

Motivation (I/II)

- IPv6 MTU requirement (1280 bytes)
 - But some LPWAN technologies lack L2 fragmentation
- 6LoWPAN fragmentation (RFC 4944)
 - IEEE 802.15.4 (maximum frame size of 127 bytes)
 - 4-byte header (1st fragment)
 - 5-byte header (subsequent fragments)
- However, LPWAN technologies:
 - Maximum payload size one order of magnitude less
 - Bit rate several orders of magnitude less
 - Further limited message rate
 - E.g. due to regulatory constraints on the duty cycle

Motivation (II/II)

- RFC 4944 fragmentation header
 May represent high overhead for LPWAN
- Furthermore, the RFC 4944 offset field is expressed in increments of 8 octets
 - Only supports L2 payload size \geq 13 bytes
 - However, there are LPWAN technologies with a shorter maximum payload size

Proposed new format

- 6LoWPAN Fragmentation Header for LPWANs (6LoFHL)
- First fragment

2

Subsequent fragments

Changes from RFC 4944 and rationale

- datagram_size field only included in the first fragment
 - Reordering is less likely in (star topology) LPWAN than in a mesh network
 - The format still supports reordering...
- datagram_tag field size reduced to 1 byte
 - Ambiguities due to wrapping not expected
 - Low message rate in LPWAN
- datagram_offset increased from 8 bits to 11 bits
 - Allows to express the offset in 1-byte increments

- Simple, byte-exact, short format
 - Supports maximum L2 payloads \geq 4 bytes
- Overhead (L2 data units)

	IPv6 datagram size (bytes)									
	11		40		100		1280			
L2 payload (bytes)	4944	6LoFHL	4944	6LoFHL	4944	6LoFHL	4944	6LoFHL		
10		2		6		15		183		
15	1	1	5	4	13	9	160	107		
20	1	1	4	3	12	6	159	76		
25	1	1	3	2	7	5	80	59		
30	1	1	2	2	5	4	54	48		

Benefits of 6LoFHL (II/II)

Overhead (adaptation layer fragmentation header bytes)

	IPv6 datagram size (bytes)									
	11		40		100		1280			
L2 payload (bytes)	4944	6LoFHL	4944	6LoFHL	4944	6LoFHL	4944	6LoFHL		
10		6		18		45		768		
15	0	0	24	12	64	27	799	321		
20	0	0	19	9	59	18	794	228		
25	0	0	14	6	34	15	399	177		
30	0	0	9	6	24	12	269	144		
T										

IANA considerations

6LoFHL allocates 16 Dispatch values:
 – 11001 000 through 11001 111
 – 11010 000 through 11010 111

Security considerations (I/III)

- 6LoWPAN fragmentation attacks and mitigation analyzed in the literature
- Buffer reservation DoS attack
 - Attacker sends a first fragment to a target
 - Reassembly buffer occupied during reassembly timeout
 - Repeat after the timeout
 - Low cost attack
 - Mitigation
 - Allow fragments of multiple packets in reassembly buffer
 - Define buffer slots
 - If buffer overload, discard packets based on sender behavior

Security considerations (II/III)

- Sending spoofed duplicates
 - Malicious node is required to have overhearing capabilities
 - Attacker
 - Overhears fragment
 - Sends spoofed duplicate (e.g. with random payload)
 - Receiver
 - Cannot distinguish legitimate from spoofed
 - Original IPv6 packet considered corrupt and dropped
 - Mitigation suggested
 - Establish a binding among the fragments to be sent
 - E.g. with cryptographic hash functionality
- Receiver can distinguish illegitimate fragments

 LPWAN@IETF96

Security considerations (III/III)

- Implementers should avoid problems due to:
 - Sending overlapped fragments
 - Comprising overlapping parts of the original datagram
 - Announcing a fake datagram size (1st fragment)

For discussion: alternative 1

- We define a 2-bit 'LPWAN dispatch'
- We reduce the tag size to 3 bits
- Format:

• 2-byte, simple format (but tag too short?)

For discussion: alternative 2

- We define a 2-bit 'LPWAN dispatch'
- We reduce the tag size to 6 bits
- We assume Sigfox as the lower bound L2 MTU
- Format
 - First fragment

- Subsequent fragments
 - Datagram_offset in units of 5 bytes
 - To fit Sigfox downlink MTU

• Saves 1 byte for subsequent fragments

Too complex?

Thanks!

Questions?

Carles Gomez (UPC/i2cat) Josep Paradells (UPC/i2cat) Jon Crowcroft (University of Cambridge)

With the support of Ministerio de Educación, Cultura y Deporte, through the José Castillejo grant CAS15/00336

LPWAN@IETF96

Back-up slide: RFC 4944 ^{(II}) fragmentation header format

• First fragment

Subsequent fragments