

#### draft-minaburo-Ipwan-gap-analysis-00

Ana Minaburo Laurent Toutain



### Outline

- LPWAN Characteristics
- LPWAN at IETF
  - IPv6, compression, fragmentation, management

## **LPWAN Characteristics**

License-exempt or Licensed bands Constrained and challenged network (as defined RFC 7228)

Property industrial deployments, huge potential

Battery powered devices with limited communications

**LPWAN** Technologies

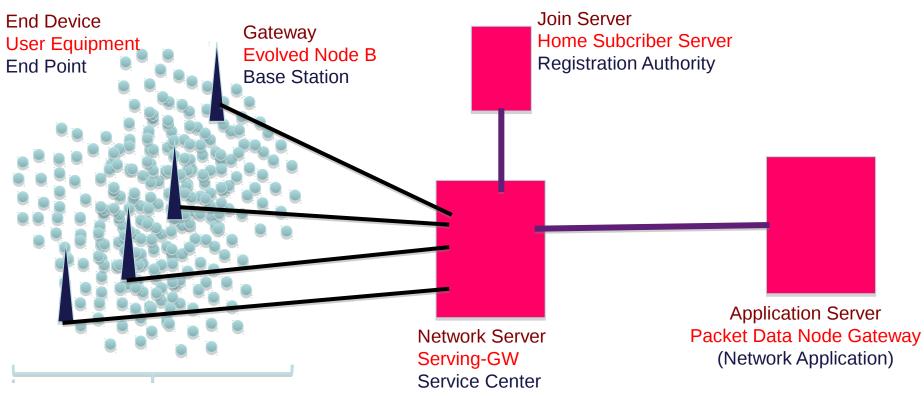
Asymmetric Lines

**Deep Coverage** 

Limit number of messages per device and per day

Acknowledgement management

No IP capabilities


LPWAN@IETF96

Small message size

Complex Device and Network management LPWAN



#### Similar architecture: Lorawan NB-IoT SIGFOX



High density of nodes



# LPWAN at IETF

- IP communication
  - Global connectivity (reachability)
  - Independence from L2
  - Use or adapt actual protocols
  - Use existing addressing spaces and naming schemes
- Strong Security
  - Adapted to the LP-WAN applications as: health, personal usages (water, gas, bus timing, etc.)
- Scalability
- High Reliability
- Interoperability
- Header Compression to reduce overhead



#### IPv6 => LPWAN

Impossible to send directly IPv6 packet, even with a fragmentation layer:

- •The overhead of IPv6 is not compatible with LPWAN
- •The variable MTU gives a variable fragmentation solution
- •Need to adapt NDP (Neighbor Discovery) to LPWAN



# 6Lowpan, 6lo => LPWAN

- 6LoWPAN reduce header overhead for reliable L2 protocols
- 6LoWPAN traditionally used for constrained node networks
  - The LPWAN technologies are even more constrained than typical 6LoWPAN
- Challenge for 6LoWPAN mechanisms is that LPWAN does not send ACK at L2
- 6Lo adapts 6LoWPAN for other technologies
  - In LP-WAN the network is also constrained
  - In LP-WAN devices are challenged
- Best IPv6/UDP header compression: 6 Bytes (10% of a LoRaWAN frame) and 37 bytes with global @.



# Configuration

- Neighbor Discovery
  - Decentralized configuration
  - 6LoWPAN ND uses unicast messages
- Messages size: [draft-gomez-lpwan-ipv6analysis-00]
  - -- Size of RS with SLLAO = 14 bytes
  - -- Size of RA with SLLAO, PIO and 6CO = 62 bytes
  - -- Size of NS with ARO and SLLAO = 46 bytes
  - -- Size of NA + ARO = 40 bytes

### (( LPWAN ))

## RoHC

- Define originally for IP/UDP/RTP streams
  - LPWAN traffic is not a stream => long convergence time
  - Bandwidth is extremely short to support IR packets (larger than a full header)
- Allows unidirectional and bidirectional links
- Extented to any protocol with RoHCv2
- Send full header, followed by field deltas
  - Impossible to send full headers in LPWAN
- Manage by a Master SN
- No Routable
- **Complex:** Profiles, Operation Modes, Level of Compression, Compression Parameters, Header Formats, & Patents?



### 6TiSCH => LPWAN

- Can be adapted to LPWAN
- 6TiSCH use synchronization to performs determinism
- 6tisch infrastructure is MESH
   LPWAN does not have a slotted channel



# Routing => LP-WAN

- LPWAN topology is a STAR
  Not need routing for the moment
- Future topologies could need an adaptation of a routing protocol



## CORE => LP-WAN

- Adapt CORE solution to:
  - Duty cycle
  - Limited throughput
  - To use CoAP
- No existing standard for CoAP compression



# IPv6 Architecture for LPWAN

- Put the IETF components together
  - IPv6
  - Security
  - Authentication
  - AAA
  - 6TiSCH
  - Header Compression
  - ND- Configuration
  - CoAP / CoMI-CoOL



#### THANKS !!!

### Ana Minaburo ana@ackl.io

LPWAN@IETF96