

High Efficiency, Moderate Complexity Video Codec using only RF IPR (https://datatracker.ietf.org/ipr/2636/)

draft-fuldseth-netvc-thor-02 Steinar Midtskogen (Cisco) IETF 96 – Berlin, DE – July 2016

1

Topics for this update

- Most important changes since IETF95/April 2016
 - Temporal skip motion vectors
 - Support for YUV 4:4:4 input
 - Improved chroma prediction

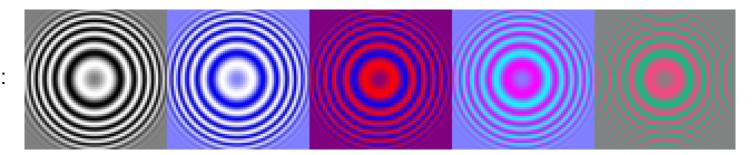
Temporal skip motion vectors

- Only used in B frames
- Replaces one spatial skip mv candidate with a candidate based on temporal mv
- Gives nearly half of the gain of interpolated reference frames (presented at IETF94), but eliminates the motion search and the overhead of storing an extra reference frame
 - Significantly reduces decoder complexity

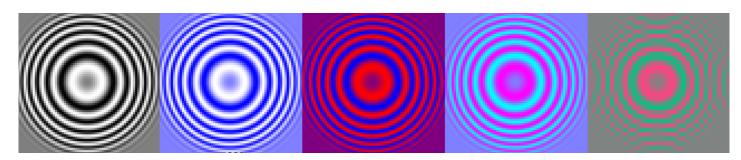
Temporal skip motion vectors

Sequence	Interpolated ref. frames	Temporal skip mv
Kimono	-4.6%	-0.9%
ParkScene	-3.1%	-0.9%
Cactus	-5.1%	-4.5%
BasketballDrive	-2.7%	0.6%
BQTerrace	-2.1%	-1.0%
ChangeSeats	-8.5%	-2.6%
HeadAndShoulder	-8.9%	-4.6%
TelePresence	-8.0%	-2.5%
WhiteBoard	-10.1%	-4.2%
FourPeople	-7.5%	-5.3%
Johnny	-7.7%	-3.2%
KristenAndSara	-8.2%	-4.6%
Average	-6.4%	-2.8%

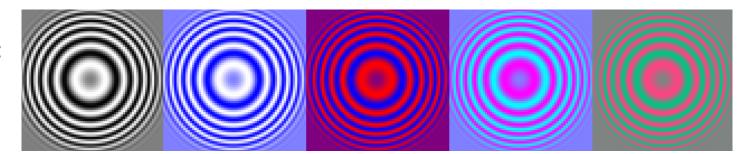
Support for YUV 4:4:4

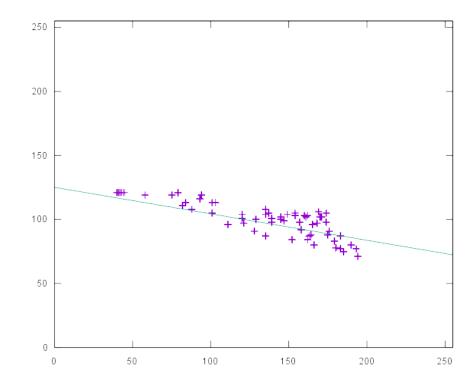

- No subsampling of chroma, and luma and chroma will use the same interpolation filter
- Significantly increases the number of bits spent for chroma (increases the total bitrate by ~5-15%)
- An experimental mode was added:
 - Support for optional subsampling of the residual at SB level
 - Adaptive upsampling in the reconstruction using a linear model to reconstruct chroma samples from luma samples
 - Significantly better than regular upsampling, but only regains about 25% of the subsampling loss objectively
- Abandoned in favour of a new chroma prediction

Support for YUV 4:4:4


Regular 4:2:0:	The quick	The quick	The quick	The quick	The outok
	brown fox	brown fox	brown fac	brown fox	brown fas
	jumps ove	jumps over	jumps over	jumps over	jumps over
	the lazy	the lazy	the Lacy	the lazy	the bacy
	dog	dog	dog	dog	dog
Upsampling using reconstruction from luma:	The quick brown fox jumps over the lazy dog	The outok brown fas jumps over the bary dog			
Original 4:4:4:	The quick				
	brown fox				
	jumps over				
	the lazy				
	dog	dog	dog	dog	dog

Support for YUV 4:4:4


Regular 4:2:0:

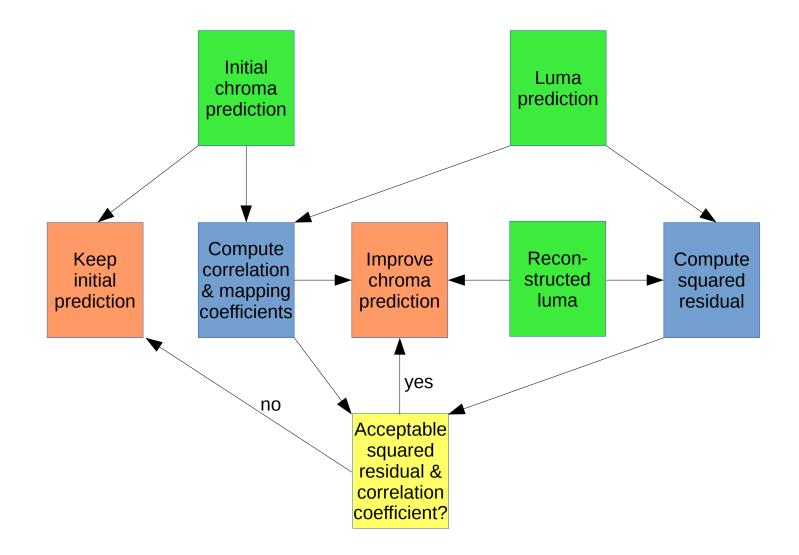

Upsampling using reconstruction from luma:

Original 4:4:4:

- As seen in the previous slides, chroma can be highly correlated with luma.
- The relationship is often nearly linear

- Finds a linear mapping from the predicted luma block to the initially predicted chroma block
- If certain criteria are satisfied, we'll use this mapping to get a new chroma prediction from the reconstructed luma block
- Informally: "Copy the reconstructed luma block and paint it with the colours of the initial prediction"
- Assumptions:
 - Colours can be identified by their luminosities
 - A reasonably strong linear mapping exists
 - Same luma-chroma correlation in the original block as in the initial prediction.

• Use linear regression to find *a* and *b*, so that we can predict chroma from using: $c_p = a^*y_r + b$


•
$$y_{sum} = \sum_{i=1}^{N} \sum_{j=1}^{N} y_{p}$$
 $c_{sum} = \sum_{i=1}^{N} \sum_{j=1}^{N} c_{p}$ $yy_{sum} = \sum_{i=1}^{N} \sum_{j=1}^{N} y_{p}^{2}$ $cc_{sum} = \sum_{i=1}^{N} \sum_{j=1}^{N} c_{p}^{2}$ $yc_{sum} = \sum_{i=1}^{N} \sum_{j=1}^{N} y_{p} c_{p}$
 $ss_{yy} = yy_{sum} - (y_{sum}^{2} >> 2*log_{2}(N))$
 $ss_{cc} = cc_{sum} - (c_{sum}^{2} >> 2*log_{2}(N))$
 $ss_{yc} = yc_{sum} - (y_{sum}c_{sum} >> 2*log_{2}(N))$
 $a = (ss_{yc} << 16) / ss_{yy}$
 $b = ((c_{sum} << 16) - a \times y_{sum}) >> 2*log_{2}(N)$

- 64 bit arithmetic in intermediate stages, but a is clipped to [-2²³, 2²³] and b to [-2³¹, 2³¹-1], lower 16 bits as the fractional part.
- If 4:2:0, subsample predicted luma block and the resulting new chroma prediction

- Criteria for using the new prediction:
 - The luma prediction is poor. Use the average squared difference between the reconstructed and predicted luma samples (i.e. the residual) as a measure of quality where above 64 means low quality:

$$\frac{\sum_{i=1}^{N} \sum_{j=1}^{N} (y_{r}(i, j) - y_{p}(i, j))^{2}}{N^{2}} > 64$$

- Sufficient luma-chroma correlation in the initial prediction. Require that the correlation coefficient is above 0.5: $ss_{yy} > 0$ and $2*ss_{yc}^2 > ss_{yy}ss_{cc}$.
- No signalling to select initial or improved prediction

Original U

Initial U prediction

Improved U prediction

(inter+intra)		4:4:4			4:2:0	
sequence	Y	U	V	Y	U	V
cad_waveform	-20.0%	-24.7%	-22.4%	-4.1%	-5.7%	-5.6%
pcb_layout	-7.3%	-11.1%	-10.1%	-1.1%	-1.8%	-1.6%
ppt_doc_xls	-19.6%	-8.9%	-9.0%	-0.3%	-1.2%	-0.8%
vc_doc_sharing	-3.2%	-6.5%	-10.1%	0.2%	-0.0%	-0.5%
web_browsing	-0.5%	-0.3%	-0.5%	-0.8%	-3.7%	-2.5%
wordEditing	-9.3%	-14.1%	-13.9%	-0.1%	-1.0%	-0.6%
park_joy	-1.4%	-7.4%	-1.2%	-0.8%	-9.9%	-1.4%
old_town_cross	-0.2%	-1.4%	-0.5%	-0.0%	-4.3%	-1.7%
Average	-7.7%	-9.3%	-8.5%	-0.9%	-3.4%	-1.8%

(intra coding)		4:4:4			4:2:0	
sequence	Y	U	V	Y	U	V
cad_waveform	-22.6%	-27.9%	-25.9%	-2.8%	-3.9%	-3.7%
pcb_layout	-18.9%	-27.1%	-20.5%	-1.1%	-1.8%	-1.6%
ppt_doc_xls	-6.4%	-12.4%	-13.5%	-0.4%	-0.2%	-0.8%
vc_doc_sharing	-5.7%	-11.9%	-11.9%	-0.1%	-2.9%	-0.6%
web_browsing	-1.4%	-1.8%	-1.8%	-0.6%	-1.0%	-1.2%
wordEditing	-12.9%	-16.3%	-13.5%	-0.3%	-5.4%	-1.2%
park_joy	-5.7%	-7.3%	-6.9%	-1.3%	-3.0%	-1.9%
old_town_cross	-1.9%	-2.4%	-2.4%	-0.2%	-4.9%	-1.7%
Average	-9.4%	-13.4%	-12.1%	-0.8%	-2.8%	-1.7%