
 1

Daala Update
IETF 96 (Berlin)

 2

Progress Since Buenos Aires

● Main development switched to AV1
– https://aomedia.googlesource.com/aom

● Daala project now primarily used as a testbed
– Preparing integration of technologies into AV1

– May continue as own codec some day when more mature
● Submitted to 2016 ICIP still image challenge

● Test results reported on ntt-short-1
– draft-ietf-netvc-testing changes now AV1-specific

– Probably won’t update Daala methodology to match

https://aomedia.googlesource.com/aom

 3

Summary

● 63 commits
● 4 new contributors
● Nguyen van Duc, Philippe Le, Rignon Noel,

Arron Vuong
● Aggregate results (ntt-short-1, default options)

 RATE (%) DSNR (dB)
 PSNR -1.15141 0.03467
 PSNRHVS -0.27349 0.01335
 SSIM -0.80811 0.01862
 FASTSSIM -1.15548 0.03196

 4

Changes

 5

Deringing Filter Changes

● Converted floating point calculations to fixed point
● Changed filter taps to [1,2,3,4,3,2,1]/16 from [2,2,3,2,3,2,2]/16
● Fixed several issues identified by NVIDIA during hardware

review
– Made block-level threshold calculation independent of other blocks

● Used to have a term involving an average over the whole superblock

– In the 45-degree case, changed second filter to run horizontally
instead of vertically

● Reduced the number of line buffers required in hardware by two

– Removed divisions in the direction search
● Used to divide by small, fixed constants (1...8) when averaging pixels along

each direction (implemented in practice by multiplies)
● Multiply by the LCM instead: no rounding errors, still fits in 32 bits

 6

Deringing Filter Changes

● Reported at Buenos Aires that these were a
small regression

● Retested shortly after and found this was no
longer true

 RATE (%) DSNR (dB)
 PSNR -0.31474 0.00944
 PSNRHVS -0.08200 0.00386
 SSIM -0.19829 0.00449
 FASTSSIM -0.68698 0.01850

 7

Q15 Entropy Coder Adaptation (1)

● At Buenos Aires Hackathon, added a simplified
entropy coder for power-of-2 probabilities
– Eliminates most approximation overhead (~1%)

● Added new probability adaptation that keeps
the sum of the probabilities constant

● Probability updates are more expensive
– But benefit from lower overhead

 8

Q15 Entropy Coder Adaptation (2)

● Fix total, T, at 32768

● Updates of the cumulative distribution, fi, maintain this total

– Coded value < symbol i
● fi → fi – (⌊ fi + 2rate – i – 2)/2rate ⌋

– Coded value ≥ symbol i
● fi → fi – (⌊ fi + M – i – 32769)/2rate⌋
● M = alphabet size

● M (alphabet size), i (symbol index), and rate are constants
– Two 15-bit vector adds and one shift with pre-computed tables

● Additional rules for first few symbols in a given context to speed
up adaptation

 9

Q15 Entropy Coder Adaptation (3)

● Modified coefficient coder, split and skip coding,
and generic coder to use new adaptation

● Currently only in a branch:
– https://github.com/jmvalin/daala/tree/exp_dyadic_adapt9

● Not sure of the effect on hardware throughput

 RATE (%) DSNR (dB)
 PSNR -0.45209 0.01360
 PSNRHVS -0.45243 0.02212
 SSIM -0.32941 0.00760
 FASTSSIM -0.47029 0.01296

https://github.com/jmvalin/daala/tree/exp_dyadic_adapt9

 10

Fixed-Point PVQ

● Status since Buenos Aires
– Completed replacements for reciprocal square roots,

exp, log, pow, etc.

– 11% of commits since IETF 95

– Nearing completion: decoder float usage mostly gone

– Impact on metrics remains small
 RATE (%) DSNR (dB)
 PSNR 0.01499 -0.00049
 PSNRHVS 0.04322 -0.00212
 SSIM 0.04482 -0.00118
 FASTSSIM 0.18308 -0.00526

 11

Rate Control

● Previously only supported constant quantizer
– With fixed adjustments based on frame type

● Added 1-pass (no lookahead) rate control
– Adapted from implementation in Theora

● Extended to handle B frames, long-term reference frames

– Targets “average bitrate” over some buffer interval
● Typical intervals 12...250 frames

– Not meant for hard-CBR (interactive)
● Complement, not replacement, for rate control in Thor

 12

Rate Control Model

● Basic model

● R = rate of a frame, in bits
● Q = actual quantizer (not QP)
● α = modeling exponent

– Fixed for the whole sequence

– 0.75...1.6, chosen based on frame type, bitrate range (bits per pixel)

● scale = estimate of scene/motion complexity
– Measured during encoding for each frame type

R=scale⋅Q−α

 13

Estimating scale

● Measure after encoding each frame
– We know R and Q, and α is fixed, solve for scale

● Measured values fed into second order Bessel filter
– Damps small oscillations
– Reacts quickly to large changes

● Time constant chosen to allow full-scale reaction in half the buffer interval
● Faster adaptation at beginning of sequence (to handle, e.g., fade from black)

● One filter per frame type
– Keyframes

– Long-term reference (golden) frames

– Regular P frames

– B frames

 14

Exponential Moving Average

● Highly oscillatory (inconsistent quality)
● Reaction time independent of buffer interval

 15

2nd Order Bessel Filter

● Oscillations damped (more consistent quality)
● Longer buffer gives smoother reactions

 16

Choosing Q (1)

● Every frame, plan out the whole buffer interval
– After encoding this frame, throw the plan away and

make a brand new one starting with the next frame

● Frame types chosen in fixed pattern
– Regular keyframe, golden frame intervals

– Regular B-frame spacing

● Aim for a fixed buffer fullness level at last
keyframe in interval (or last frame)

 17

Choosing Q (2)

● Pick constant quantizer that achieves target buffer fullness level
– Taking into account fixed adjustments based on frame type, i

● Ni is the number of frames of each type

● Each Qi is a function of master Q (just like constant-quantizer)

● Adjust master Q until R hits target
– Binary search (robust)

R=∑
i

N i⋅scalei⋅Q i
−αi

 18

Two-Pass

● Measure scale for each frame in first pass
● Use measured scale instead of Bessel filter

– Ni·scalei is just the sum of the measured values in the buffer interval

– Currently assuming frame types don’t change between passes

● Add a fixed offset to correct for consistent over/under estimates
● Everything else is just like one-pass

– Generalizes to one-pass-with-lookahead also

● Supports buffer intervals up to the whole sequence
– “Unconstrained” VBR

 19

Chunked Two-Pass (1)

● How video sharing sites work
– Split video into many small (1...5 second) chunk

– Encode each one in parallel to reduce latency

● Current libvpx rate control
– Don’t want each chunk to be the same size

● Complex scenes need enough rate to look good
● Simple scenes only need so much quality

– “Relax” buffer constraints
● Intentionally over/under-shoot

– Hope it works out on average over the whole sequence

 20

Chunked Two-Pass (2)

● Better approach
– Run first-pass for each chunk

– Collect scale measurements from each chunk
● Really only need average scale and count for each frame

type over the whole sequence

– Buffer plan can now take into account the rest of
the sequence

 21

Current Status and Future Plans

● 1-pass landed in Daala, 2-pass coming soon
● Next steps

– Port to AV1
● Handle adaptive frame type decisions
● Handle additional frame types (alt-refs)

– Compare with old libvpx rate control

 22

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

