
David Noveck

nfsv4wg meeting at IETF96

July 19, 2016

Updating RPC-over-RDMA:
Next steps

Contents

• Overall goals
• Individual documents

• draft-dnoveck-nfsv4-rpcrpdma-xcharext-00
• draft-dnoveck-nfsv4-rpcrpdma-rtissues-00
• draft-dnoveck-nfsv4-rpcrpdma-rtrext-00

• Send-based DDP
• Message Continuation
• New Optional header types

• Where do we go from here?

Overall Goals

Use the extension framework provided in draft-cel-nfsv4-rpcrdma-version-
two in order to improve RPC-over-RDMA performance.

1) Recover valuable things that were mentioned in RFC5666 but
unfortunately had to be dropped in the transition to rfc5666bis.
• Transport characteristics reporting/exchange
• Direct Placement without explicit RDMA ops (was RDMA_MSGP).

2) Get the performance-related features that have been proven in other
similar transports but are not available in Version One:
• Remote invalidation
• Message continuation

draft-dnoveck-nfsv4-rpcrdma-xcharext-00

• Provides framework to describe transport characteristics
• Set of initial characteristic provided but set is extensible
• Enables Performance Improvements:

• Determination of remote invalidation support
• Enables larger (than 4K) receive buffers.
• Is built upon (in draft-dnoveck-nfsv4-rpcrdma-rtrext) to enable:

• Message Continuation
• Send-based DDP

draft-dnoveck-nfsv4-rpcrdma-rtissues-00
Summary
• Addresses issue of round trips within RPC/RDMA v1

• Focused on simple common cases such as 8K IOs
• Wanted to know how bad the problem is and whether it can be fixed without writing

off v1 and taking a completely new direction in a vN, for N >= 2.

• Conclusions:
• Three round-trips when explicit RDMA operation is used

• But some of those don’t contribute to latency

• There is a latency issue in the WRITE (RDMA read) case
• Two nested round-trip latencies.
• Also, two instances of server-side interrupt latency (one addl. one)

• Performance issues can be addressed within current v2 framework

draft-dnoveck-nfsv4-rpcrdma-rtissues-00
8K WRITE: explicit RDMA vs. send-receive into large buf
Explicit RDMA operation
• Register Memory
• RPC call sent
• After internode latency, RPC Call received; ack sent, but nobody waits for it
• After server interrupt latency, start processing RPC Call
• RDMA read operation started
• After internode latency, data retrieved from client
• After further internode latency, data received is stored on server and server

interrupted
• After interrupt latency, processing of RPC Call resumed
• RPC Reply sent
• After internode latency, RPC Reply in client mem; client interrupted;
• Adapter undoes registration
• Ack sent but nobody waits for it
• After client interrupt latency, RPC Reply processed

Send-receive only
• Registration not needed
• Same
• Same (incl. IN L)
• Same (incl. SRV INT L)
• RDMA op Not needed
• IN L Not needed
• IN L Not Needed

• SRV INT L Not Needed
• Same
• Same (incl IN L)
• Deregistration not needed
• Same
• Same (incl CL INT L)

draft-dnoveck-nfsv4-rpcrdma-rtissues-00
8K READ: explicit RDMA vs. send-receive into large buf
Explicit RDMA operation
• Register Memory
• Send RPC Call
• After inter-node latency, RPC Call received; ack sent, but nobody waits for

it
• After server interrupt latency, server starts processing RPC Call
• When data ready, RDMA write operation started
• After internode latency, data stored on client and ack sent (not waited for)
• Response sent
• After internode latency, RPC Call in client mem; client interrupted;
• Adapter undoes registration;
• Ack sent but nobody waits for it
• After client interrupt latency, RPC Reply processed

Send-receive only
• Registration not needed
• Same
• Same (incl. IN L)

• Same (incl. SRV INT L)
• RDMA op Not needed
• 1-way latency Not needed
• Same
• Same (incl. IN L)
• Deregistration not needed
• Same
• Same (incl. CL INT L)

draft-dnoveck-nfsv4-rpcrdma-rtissues-00
Observations
• There is a bunch of work involved in providing DDP using explicit

RDMA operations.
• Not as much work as copying data but it isn’t free.

• It is best to avoid copying without using explicit RDMA operations
• On send side, implementation can avoid using send buffers. Just write data

from where it is, using SG lists when necessary.
• On receive side, need DDP without explicit RDMA ops

• So RDMA_MSGP was on the right track
• Too bad it had to be dropped
• The essence of that approach can be obtained in a different form

• Pursued in draft-dnoveck-nfsv4-rpcrma-rtrext.

draft-dnoveck-nfsv4-rpcrdma-rtrext-00
Motivation
• Based on results of rtissues investigation.
• Additional round trip involved in doing an explicit RDMA operation in

addition to basic sends/receives for RPC.
• In addition to round-trip, latency to interrupt server.
• Acks (because of use of reliable datagram) don’t add to latency.

• Initial investigation showed explicit RDMA operation not needed in
many common cases

draft-dnoveck-nfsv4-rpcrdma-rtrext-00
Basic Approach
• Can we get rid of explicit RDMA operations while retaining benefits?

• Yes, in most cases.

• Look at where explicit RDMA operations are used:
• To do DDP

• Send-based DDP is a viable alternative.

• Because message is too long for buffer
• Use multiple messages (i.e. message continuation)

• Result:
• Two OPTIONAL features in single extension:

• Message continuation, Send-based DDP
• Implementations may support either or both

Send-based DDP
Overview
• Same basic idea as RDMA_MSGP

• Place data in area with required size and alignment.
• As opposed to directing it at a pre-specified address

• Major Differences from RDMA_MSGP
• Treated as an instance of DDP and governed by ULB.

• Allows operations in COMPOUND past the READ or WRITE
• And can also allow multiple IO operations in single COMPOUND

• Sender has knowledge of receiver’s buffer structure.
• Supports DDP on the request (for WRITE data) and not just for response data.

Send-based DDP
Buffer Structure
• Built on idea receive buffers will use SG lists

• Typically, a smaller area for payload stream plus an aligned buffer as DDP
target.

• Some likely buffer structures:
• 1K for payload segment plus an 8K DDP-targetable buffer segment
• 1K for payload segment plus a 4K DDP-targetable buffer segment

• Could use msg continuation to read 8K

• Could have multiple DDP-targetable buffer segments

• Buffer structure available to partner as transport characteristic.
• Can compute necessary fill/padding to get the DDP-eligible data to required

alignment in DDP-targetable buffer segment

Send-based DDP
New DDP-related Data Structures
• New message types do not use existing read and write chunks

• But provisions made for old-style DDP with explicit RDMA ops
• New message type for requests includes optional reply chunk

• Needed to support cases for which msg continuation support is not present or cannot
be taken advantage of.

• New approach to DDP
• Each message, whether request or response, indicates where DDP-eligible data, in

that message, is located.
• Request indicates how DDP-eligible data in response should be placed

• Provides more flexibility than current chunk-based approach
• With msg continuation, DDP info only present in first SEND of message

New DDP-related Data Structures
DDP-eligible Data Locations (one of three)
• Requests and responses each have an array of xmddp_mitems

• In a request, there is one for each (DDP-eligible) data item directly placed
• In a response, there is one for each response-direction element in request

• Includes those for which no direct placement actually occurred

• Each xmddp_mitem contains:
• The displacement the item would have in the XDR stream as whole
• The length of the item
• Location information, which can have a number of forms, as described in the

next slides

New DDP-related Data Structures
DDP-eligible Data Locations (two of three)

• To accommodate old- and new-style DDP, a switched union is
used

• Allows new header types to be used by those that don’t support
send-based DDP

• Implementations that only support the msg continuation feature
• Implementations that only need the more flexible DDP structures and

don’t support either new feature.

New DDP-related Data Structures
DDP-eligible Data Locations (three of three)
• In the XMDTYPE_EXRW case:

• Contains an array of rpcrma1_segments indicating where the data is located

• In the XMDTYPE_TBSN case, contains
• Offset of start of item in first DDP-targetable buffer segment
• An array of buffer segment numbers of DDP-targetable buffer segments where the data is

located

• A few cases (with void) only useful in the response case
• XMDTYPE_NOITEM is for response direction item which had no data item
• XMDTYPE_TOOSHORT is for response direction item where data item is too short to

merit DDP
• These cases are semantically invalid in request.

New DDP-related Data Structures
DDP Response Direction (one of two)
• One response direction item for each potential DDP-eligible data item

• Can be organized into sets, based on the associated region of request, so …
• Each op in a COMPOUND with DDP-eligible data items can have a separate set.

• Each xmddp_rsdset contains:
• A range of positions in the request to which this set applies
• An array of xmddp_rsditems

• Each xmddp_rsditem contains:
• A minimum length for direct placement

• Any item, that is not at least this length, is placed inline

• Information about how item is to be placed, if it is placed, in an xmddp_rsdloc
• Details on this in next slide

New DDP-related Data Structures
DDP Response Direction (two of two)
• xmddp_rsdloc is a switched union

• Three cases contain an array of rpcrdma1_segments
• XMDTYPE_EXRW directs the data to these segments
• XMDTYPE_CHOICE allows responder to use those segments to DDP-targetable buffer segments in

response
• XMDTYPE_BYSIZE tells responder to choose explicit RDMA only above a certain sIze.

• XMDTYPE_TBSN (with void) tell responders to use DDP-targetable buffer segments in
response

• Mapping from type in xmddp_rsdloc to xmddp_loc in response
• EXRW, TBSN typically come over as is
• CHOICE, BYSIZE are converted to type of placement actually used
• Any entry type can be mapped to TOOSHORT or NOITEM

Message Continuation
Overview
• Allows a single request or response to be split into multiple SENDs
• There is less need to use it when receive buffers are larger, but …

• There are important feature synergies with send-based DDP
• For example, when 64K (e.g.) IOs are being done.

• It is also valuable to have available, when it is hardly ever used
• To avoid need for reply chunk when large reply is just barely possible
• Can avoid registration overhead when it serves no real purpose.

• Approach taken is to number segments of message
• Initial message has number of segments
• Count has to be known in advance to support credit management:

Message Continuation
Credit Management (one of two)
• Msg continuation requires one credit per RDMA transmission

• Despite earlier language tying credits to RPC messages or RPCs

• When sending a multi-transmission request:
• Enough credits need to be available on responder to receive complete

request.
• If they aren’t, position-zero read chunk can be used

Message Continuation
Credit Management (two of two)
• When sending a request which might need a multi-transmission

response
• Requester need to prepost enough buffers to receive the maximum size

response
• If that’s not possible, reply chunk needs to be provided
• Number of posted receives sent with request.

• When requester cannot receive or responder cannot send XMOPT_CONT, that
number will be one.

• First transmission of response will have actual number of SENDs in response
• When that is less than original maximum, excess receives become available for

credits or may be recycled for future long responses.

New Message Types
Overview
• Three new OPTIONAL message types:

• XMOPT_REQ to send request (or initial segment of request)
• XMOPT_RESP to send response (or initial segment of response)
• XMOPT_CONT to send later segments of requests or responses

• Can be supported even if Send-based DDP is not supported
• XMOPT_{REQ,RESP} can be supported even if msg continuation is not

supported.
• Can determine peer support for these message types by trying these

or by looking at a transport characteristic.

Where do we go from here?
Overview

• First assess where we are.
• I’ll present my own assessment
• Want to hear others’

• Make some decisions about directions for RDMA
• Address near-term document issues
• Better understand RDMA performance

Where do we go from here?
My Assessment about where we are now.
• Clarifying Version One is now pretty much complete.

• It now seems that this was a necessary chore.
• I thought the focus on Version One was excessive, but now that it has been done, it doesn’t

matter.
• It certainly was a chore.
• I want to thank Chuck, Tom, and Bill for getting this chore done, and done well.

• But now, the XDR shackles are off, and we can look at what is necessary to
proceed further.

• Important to not interfere with ongoing Version One implementation work.
• I think the best approach is to use the Version Two framework already established.

• That will allow Version Two implementations to interoperate with existing Version One
implementations

Where do we go from here?
Decisions that need to be made
• Working group needs to decide future RDMA directions:

• Has decided rfc5667bis is needed
• That work can proceed while other RDMA work goes on.
• If that work uses rfc5666bis framework, it will be compatible with extensions proposed.

• No wg decision has yet been made on a Version Two.
• This talk has assumed extensible Version Two is a good vehicle for further work

• Implementers need to decide on the focus of their efforts:
• Those focusing on Version One could easily support Version Two with no extensions,

if the current Version Two approach is adopted.
• Those with a post-Version-One focus need to decide what existing extensions are

important to them and whether to propose others.

Where do we go from here?
Near-term Document Issues
• We now have a tower of I-Ds

• I-D draft-dnoveck-nfsv4-rpcrdma-rtrext is built on I-D draft-dnoveck-nfsv4-
rpcrdma-xcharext

• Which, in turn, is built on I-D draft-cel-nfsv4-rpcrdma-version-two

• Issues:
• None of these documents has had much working group discussion and review

so far.
• Now that the Version One documents are done, urge people to look at the

documents related to Version Two.
• As that process proceeds, working group needs to consider making the lower

levels of this tower into working group documents.

Where do we go from here?
Understanding RDMA Performance Issues
• Had a situation in which our performance issues could have been:

• Protocol weaknesses
• Implementation problems

• That uncertainty made it hard to make progress
• Can’t tackle big implementation issues if protocol might be to blame
• Hard to tackle protocol weaknesses if the issue might “really” be implementation

• Believe this set of extensions addresses the protocol issues
• Want to hear from anyone who disagrees
• If they do, it’s now time to tackle implementation overhead and need for trunking.

• Some cases in which protocol and implementation are both at fault.
• Interrupt latency: send-based DDP has made this less critical but it still is an issue

	Slide 1
	Contents
	Overall Goals
	draft-dnoveck-nfsv4-rpcrdma-xcharext-00
	draft-dnoveck-nfsv4-rpcrdma-rtissues-00 Summary
	Slide 6
	Slide 7
	draft-dnoveck-nfsv4-rpcrdma-rtissues-00 Observations
	draft-dnoveck-nfsv4-rpcrdma-rtrext-00 Motivation
	draft-dnoveck-nfsv4-rpcrdma-rtrext-00 Basic Approach
	Send-based DDP Overview
	Send-based DDP Buffer Structure
	Send-based DDP New DDP-related Data Structures
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Message Continuation Overview
	Message Continuation Credit Management (one of two)
	Message Continuation Credit Management (two of two)
	New Message Types Overview
	Where do we go from here? Overview
	Where do we go from here? My Assessment about where we are now.
	Where do we go from here? Decisions that need to be made
	Where do we go from here? Near-term Document Issues
	Where do we go from here? Understanding RDMA Performance Issues

