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Overall Goals

Use the extension framework provided in draft-cel-nfsv4-rpcrdma-version-
two in order to improve RPC-over-RDMA performance.

1) Recover valuable things that were mentioned in RFC5666 but 
unfortunately had to be dropped in the transition to rfc5666bis.
• Transport characteristics reporting/exchange
• Direct Placement without explicit RDMA ops (was RDMA_MSGP).

2) Get the performance-related features that have been proven in other 
similar transports but are not available in Version One:
• Remote invalidation
• Message continuation



draft-dnoveck-nfsv4-rpcrdma-xcharext-00

• Provides framework to describe transport characteristics
• Set of initial characteristic provided but set is extensible
• Enables Performance Improvements:

• Determination of remote invalidation support
• Enables larger (than 4K) receive buffers.
• Is built upon (in draft-dnoveck-nfsv4-rpcrdma-rtrext) to enable:

• Message Continuation
• Send-based DDP



draft-dnoveck-nfsv4-rpcrdma-rtissues-00
Summary
• Addresses issue of round trips within RPC/RDMA v1

• Focused on simple common cases such as 8K IOs
• Wanted to know how bad the problem is and whether it can be fixed without writing 

off v1 and taking a completely new direction in a vN, for N >= 2.

• Conclusions:
• Three round-trips when explicit RDMA operation is used

• But some of those don’t contribute to latency

• There is a latency issue in the WRITE (RDMA read) case
• Two nested round-trip latencies.
• Also, two instances of server-side interrupt latency (one addl. one)

• Performance issues can be addressed within current v2 framework



draft-dnoveck-nfsv4-rpcrdma-rtissues-00
8K WRITE: explicit RDMA vs. send-receive into large buf
Explicit RDMA operation
• Register Memory
• RPC call sent
• After internode latency, RPC Call received; ack sent, but nobody waits for it
• After server interrupt latency, start processing RPC Call
• RDMA read operation started
• After internode latency, data retrieved from client 
• After further internode latency, data received is stored on server and server 

interrupted
• After interrupt latency, processing of RPC Call resumed
• RPC Reply sent
• After internode latency, RPC Reply in client mem; client interrupted; 
• Adapter undoes registration
• Ack sent but nobody waits for it
• After client interrupt latency, RPC Reply processed

Send-receive only
•  Registration not needed
• Same
• Same (incl. IN L)
• Same (incl. SRV INT L)
•  RDMA op Not needed
•  IN L Not needed
•  IN L Not Needed

•  SRV INT L Not Needed
• Same
• Same (incl IN L)
•  Deregistration not needed
• Same
• Same (incl CL INT L)



draft-dnoveck-nfsv4-rpcrdma-rtissues-00
8K READ: explicit RDMA vs. send-receive into large buf
Explicit RDMA operation
• Register Memory
• Send RPC Call
• After inter-node latency, RPC Call received; ack sent, but nobody waits for 

it
• After server interrupt latency, server starts processing RPC Call
• When data ready, RDMA write operation started
• After internode latency, data stored on client and ack sent (not waited for)
• Response sent
• After internode latency, RPC Call in client mem; client interrupted; 
• Adapter undoes registration;
• Ack sent but nobody waits for it
• After client interrupt latency, RPC Reply processed

Send-receive only
•  Registration not needed
• Same
• Same (incl. IN L)

• Same (incl. SRV INT L)
•  RDMA op Not needed
•  1-way latency Not needed
• Same
• Same (incl. IN L)
•  Deregistration not needed
• Same
• Same (incl. CL INT L)



draft-dnoveck-nfsv4-rpcrdma-rtissues-00
Observations
• There is a bunch of work involved in providing DDP using explicit 

RDMA operations.
• Not as much work as copying data but it isn’t free.

• It is best to avoid copying without using explicit RDMA operations
• On send side, implementation can avoid using send buffers.  Just write data 

from where it is, using SG lists when necessary.  
• On receive side, need DDP without explicit RDMA ops

• So RDMA_MSGP was on the right track 
• Too bad it had to be dropped 
• The essence of that approach can be obtained in a different form 

• Pursued in draft-dnoveck-nfsv4-rpcrma-rtrext.



draft-dnoveck-nfsv4-rpcrdma-rtrext-00
Motivation
• Based on results of rtissues investigation.
• Additional round trip involved in doing an explicit RDMA operation in 

addition to basic sends/receives for RPC.
• In addition to round-trip, latency to interrupt server.
• Acks (because of use of reliable datagram) don’t add to latency.

• Initial investigation showed explicit RDMA operation not needed in 
many common cases



draft-dnoveck-nfsv4-rpcrdma-rtrext-00
Basic Approach
• Can we get rid of explicit RDMA operations while retaining benefits?

• Yes, in most cases.

• Look at where explicit RDMA operations are used:
• To do DDP

• Send-based DDP is a viable alternative.

• Because message is too long for buffer
• Use multiple messages (i.e. message continuation)

• Result:
• Two OPTIONAL features in single extension:

• Message continuation, Send-based DDP
• Implementations may support either or both



Send-based DDP
Overview
• Same basic idea as RDMA_MSGP

• Place data in area with required size and alignment.
• As opposed to directing it at a pre-specified address 

• Major Differences from RDMA_MSGP
• Treated as an instance of DDP and governed by ULB.

• Allows operations in COMPOUND past the READ or WRITE
• And can also allow multiple IO operations in single COMPOUND

• Sender has knowledge of receiver’s buffer structure.
• Supports DDP on the request (for WRITE data) and not just for response data.



Send-based DDP 
Buffer Structure
• Built on idea receive buffers will use SG lists

• Typically, a smaller area for payload stream plus an aligned buffer as DDP 
target.

• Some likely buffer structures:
• 1K for payload segment plus an 8K DDP-targetable buffer segment
• 1K for payload segment plus a 4K DDP-targetable buffer segment 

• Could use msg continuation to read 8K

• Could have multiple DDP-targetable buffer segments

• Buffer structure available to partner as transport characteristic.
• Can compute necessary fill/padding to get the DDP-eligible data to required 

alignment in DDP-targetable buffer segment 



Send-based DDP 
New DDP-related Data Structures
• New message types do not use existing read and write chunks

• But provisions made for old-style DDP with explicit RDMA ops
• New message type for requests includes optional reply chunk

• Needed to support cases for which msg continuation support is not present or cannot 
be taken advantage of.

• New approach to DDP
• Each message, whether request or response, indicates where DDP-eligible data, in 

that message, is located.
• Request indicates how DDP-eligible data in response should be placed

• Provides more flexibility than current chunk-based approach
• With msg continuation, DDP info only present in first SEND of message



New DDP-related Data Structures
DDP-eligible Data Locations (one of three)
• Requests and responses each have an array of xmddp_mitems

• In a request, there is one for each (DDP-eligible) data item directly placed
• In a response, there is one for each response-direction element in request

• Includes those for which no direct placement actually occurred

• Each xmddp_mitem contains:
• The displacement the item would have in the XDR stream as whole
• The length of the item
• Location information, which can have a number of forms, as described in the 

next slides



New DDP-related Data Structures
DDP-eligible Data Locations (two of three)

• To accommodate old- and new-style DDP, a switched union is 
used

• Allows new header types to be used by those that don’t support 
send-based DDP

• Implementations that only support the msg continuation feature
• Implementations that only need the more flexible DDP structures and 

don’t support either new feature.



New DDP-related Data Structures
DDP-eligible Data Locations (three of three)
• In the XMDTYPE_EXRW case:

• Contains an array of rpcrma1_segments indicating where the data is located

• In the XMDTYPE_TBSN case, contains
• Offset of start of item in first DDP-targetable buffer segment 
• An array of buffer segment numbers of DDP-targetable buffer segments where the data is 

located

• A few cases (with void) only useful in the response case
• XMDTYPE_NOITEM is for response direction item which had no data item
• XMDTYPE_TOOSHORT is for response direction item where data item is too short to 

merit DDP
• These cases are semantically invalid in request.



New DDP-related Data Structures
DDP Response Direction (one of two)
• One response direction item for each potential DDP-eligible data item

• Can be organized into sets, based on the associated region of request, so …
• Each op in a COMPOUND with DDP-eligible data items can have a separate set.

• Each xmddp_rsdset contains:
• A range of positions in the request to which this set applies
• An array of xmddp_rsditems

• Each xmddp_rsditem contains:
• A minimum length for direct placement

• Any item, that is not at least this length, is placed inline

• Information about how item is to be placed, if it is placed, in an xmddp_rsdloc
• Details on this in next slide



New DDP-related Data Structures
DDP Response Direction (two of two)
• xmddp_rsdloc is a switched union

• Three cases contain an array of rpcrdma1_segments
• XMDTYPE_EXRW directs the data to these segments
• XMDTYPE_CHOICE allows responder to use those segments to DDP-targetable buffer segments in 

response
• XMDTYPE_BYSIZE tells responder to choose explicit RDMA only above a certain sIze.

• XMDTYPE_TBSN (with void) tell responders to use DDP-targetable buffer segments in 
response

• Mapping from type in xmddp_rsdloc to xmddp_loc in response
• EXRW, TBSN typically come over as is
• CHOICE, BYSIZE are converted to type of placement actually used
• Any entry type can be mapped to TOOSHORT or NOITEM



Message Continuation
Overview
• Allows a single request or response to be split into multiple SENDs
• There is less need to use it when receive buffers are larger, but …

• There are important feature synergies with send-based DDP
• For example, when  64K (e.g.) IOs are being done.

• It is also valuable to have available, when it is hardly ever used
• To avoid need for reply chunk when large reply is just barely possible
• Can avoid registration overhead when it serves no real purpose. 

• Approach taken is to number segments of message
• Initial message has number of segments
• Count has to be known in advance to support credit management: 



Message Continuation
Credit Management (one of two)
• Msg continuation requires one credit per RDMA transmission

• Despite earlier language tying credits to RPC messages or RPCs

• When sending a multi-transmission request:
• Enough credits need to be available on responder to receive complete 

request.
• If they aren’t, position-zero read chunk can be used



Message Continuation
Credit Management (two of two)
• When sending a request which might need a multi-transmission 

response
• Requester need to prepost enough buffers to receive the maximum size 

response
• If that’s not possible, reply chunk needs to be provided 
• Number of posted receives sent with request.

• When requester cannot receive or responder cannot send XMOPT_CONT, that 
number will be one.

• First transmission of response will have actual number of SENDs in response 
• When that is less than original maximum, excess receives become available for 

credits or may be recycled for future long responses.



New Message Types
Overview
• Three new OPTIONAL message types:

• XMOPT_REQ to send request (or initial segment of request)
• XMOPT_RESP to send response (or initial segment of response)
• XMOPT_CONT to send later segments of requests or responses

• Can be supported even if Send-based DDP is not supported
• XMOPT_{REQ,RESP} can be supported even if msg continuation is not 

supported.
• Can determine peer support for these message types by trying these 

or by looking at a transport characteristic.



Where do we go from here?
Overview

• First assess where we are.
• I’ll present my own assessment
• Want to hear others’

• Make some decisions about directions for RDMA
• Address near-term document issues
• Better understand RDMA performance



Where do we go from here?
My Assessment about where we are now.
• Clarifying Version One is now pretty much complete.

• It now seems that this was a necessary chore.
• I thought the focus on Version One was excessive, but now that it has been done, it doesn’t 

matter.
• It certainly was a chore.
• I want to thank Chuck, Tom, and Bill for getting this chore done, and done well.

• But now, the XDR shackles are off, and we can  look at what is necessary to 
proceed further.

• Important to not interfere with ongoing Version One implementation work.
• I think the best approach is to use the Version Two framework already established.

• That will allow Version Two implementations to interoperate with existing Version One 
implementations



Where do we go from here?
Decisions that need to be made
• Working group needs to decide future RDMA directions:

• Has decided rfc5667bis is needed
• That work can proceed while other RDMA work goes on.
• If that work uses rfc5666bis framework, it will be compatible with extensions proposed.

• No wg decision has yet been made on a Version Two.
• This talk has assumed extensible Version Two is a good vehicle for further work

• Implementers need to decide on the focus of their efforts:
• Those focusing on Version One could easily support Version Two with no extensions, 

if the current Version Two approach is adopted.
• Those with a post-Version-One focus need to decide what existing extensions are 

important to them and whether to propose others.



Where do we go from here?
Near-term Document Issues
• We now have a tower of I-Ds

• I-D draft-dnoveck-nfsv4-rpcrdma-rtrext is built on I-D draft-dnoveck-nfsv4-
rpcrdma-xcharext

• Which, in turn, is built on I-D draft-cel-nfsv4-rpcrdma-version-two

• Issues:
• None of these documents has had much working group discussion and review 

so far.
• Now that the Version One documents are done, urge people to look at the 

documents related to Version Two.
• As that process proceeds, working group needs to consider making the lower 

levels of this tower into working group documents.



Where do we go from here?
Understanding RDMA Performance Issues
• Had a situation in which our performance issues could have been:

• Protocol weaknesses
• Implementation problems

• That uncertainty made it hard to make progress
• Can’t tackle big implementation issues if protocol might be to blame
• Hard to tackle protocol weaknesses if the issue might “really” be implementation

• Believe this set of extensions addresses the protocol issues
• Want to hear from anyone who disagrees
• If they do, it’s now time to tackle implementation overhead and need for trunking.

• Some cases in which protocol and implementation are both at fault.
• Interrupt latency: send-based DDP has made this less critical but it still is an issue
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