
RPC-Over-RDMA
Version Two

Chuck Lever, Oracle

IETF 96 - Berlin nfsv4 Working Group

Focused Changes

• Relieve obvious performance constraints

• Facilitate incremental protocol improvements

• Leverage current Version One implementations

• Continue to support broad set of hardware and
user space and embedded applications

2

IETF 96 - Berlin nfsv4 Working Group

Extensibility
• Enable improvements:

• Over time to address issues and fully develop
and prototype new OPTIONAL features

• Without protocol version bump or specification
update

• Without specification and prototyping
dependencies between unrelated features

3

IETF 96 - Berlin nfsv4 Working Group

Extensibility Mechanism
• Base protocol

• Defines an opcode field and an opaque data field in
the RPC-over-RDMA header

• Extensions

• Define new opcodes and message data types in
other standards track documents

• Concatenate XDR definitions from these documents
to build a sparse feature set

4

IETF 96 - Berlin nfsv4 Working Group

Extensibility XDR

5

struct rpcrdma2_optional {  
 enum msg_type rdma_optdir;  
 uint32 rdma_opttype;  
 opaque rdma_optinfo<>;
};

/* From RFC 5531 Section 9 */  
enum msg_type {
 CALL = 0,  
 REPLY = 1,  
};

IETF 96 - Berlin nfsv4 Working Group

Extensibility XDR

6

enum rpcrdma2_proc {  
 RDMA2_MSG = 0,  
 RDMA2_NOMSG = 1,  
 RDMA2_ERROR = 4,  
 RDMA2_OPTIONAL = 5  
};

union rpcrdma2_body switch (rpcrdma2_proc rdma_proc) {  
 case RDMA2_MSG:  
 rpcrdma2_chunks rdma_chunks;  
 case RDMA2_NOMSG:  
 rpcrdma2_chunks rdma_chunks;  
 case RDMA2_ERROR:  
 rpcrdma2_error rdma_error;  
 case RDMA2_OPTIONAL:  
 rpcrdma2_optional rdma_optional;  
};

IETF 96 - Berlin nfsv4 Working Group

Extensibility XDR

7

enum rpcrdma2_errcode {  
 RDMA2_ERR_VERS = 1,  
 RDMA2_ERR_BAD_HEADER = 2,  
 RDMA2_ERR_INVAL_OPTION = 3  
};

union rpcrdma2_error switch (rpcrdma2_errcode rdma_err) {  
 case RDMA2_ERR_VERS:  
 rpcrdma2_err_vers rdma_vrange;  
 case RDMA2_ERR_BAD_HEADER:  
 void;  
 case RDMA2_ERR_INVAL_OPTION:  
 void;  
};

IETF 96 - Berlin nfsv4 Working Group

4KB Inline Threshold
• RDMA Read for small WRITE/SYMLINK payloads

adds registration plus a round trip

• Average size of NFSv4 metadata operations is
greater than similar NFSv3 operations

• Large RPCs require a Reply and/or a Position
Zero Read chunk (a registration/invalidation)

• Backchannel operations without RDMA are size-
constrained

8

IETF 96 - Berlin nfsv4 Working Group

Why Not More Than 4KB?
• The minimum value allowed for Version Two should be

something that can be broadly implemented

• 4KB can be supplemented by OPTIONAL features:

• Exchange of inline threshold maxima

• Message continuation

• Large Receive buffers pin lots of memory

• There might not be much benefit past 16KB

9

IETF 96 - Berlin nfsv4 Working Group

Remote Invalidation?
• Send With Invalidate is a Send that asks receiving

RNIC to invalidate one tag before Receive
completes

• Receive completion reports the invalidated tag to
the consumer

• Smart implementations might utilize only one tag
per RPC, mitigating cost of invalidating during RPC
reply completion

10

IETF 96 - Berlin nfsv4 Working Group

Remote Invalidation?
• Basic support requires no XDR changes

• State that Version Two responders MAY use Send With
Invalidate in place of Send to convey replies

• OPTIONAL features can later refine when a server
actually uses Send With Invalidate

• V2 is then unusable on clients with RNICs that do not
handle Send With Invalidate

• Does this disenfranchise interesting hardware or
deployment scenarios?

11

