
PRACTICAL RESULTS:
ATTESTATION, REMOTE ATTESTATION,

CONFINEMENT AND NETWORK
ACCELERATION TECHNOLOGIES

ETSI NFVSEC(16)000104

Michael Lazar
mlazar@dataart.com

DISCLAIMER

The information in this presentation is provided "as is" and no guarantee
or warranty is given that this information is suitable for any particular
purpose. The user thereof uses the information at their own risk.

ABOUT THIS PRESENTATION

Used COTS equipment and Open Source Software to put together a ‘real world’ NFV implementation

System consisted of OpenStack / OPNFV / OpenDaylight

Intel architecture was utilized

The implementation utilized several security technologies

No specific use NFV-SEC case was used.

Presentation is for educational and informative purposes only

ETSI NFV REFERENCE ARCHITECTURE

Execution Reference Points Other Reference Points Main NFV Reference Points

CHAIN OF TRUST – ATTESTATION IS DESIGNED
TO PRODUCE A SECURE ROOT OF TRUST

Consider that entity A launches entity B, then B launches C.

A measures B then passes control to B
B measures C and passes control to C

The question now becomes "who measures A?”

The Core Root of Trust for Measurement
(CRTM) is the BIOS boot block code. This
piece of code is considered trustworthy. It does
not change during the life of the system.

When a TPM is present and enabled
(TPM_INIT) the system will evaluate
components and extend values in the PCRs.
These can then be verified to be valid.

*BIOS is being used as a generic term.

Is the platform trusted?

REMOTE ATTESTATION ARCHITECTURE –
OVERVIEW

Remote Attestation is a
means by which a trusted
computer assures a remote
computer of its trustworthy
status.

VIRTUALIZATION –
THE ‘ROOT’ OF THE ISSUE

The (vast) majority of todays commercial physical compute resources and operating systems
fundamentally work off of a implicit trust model. To be more explicit, there is trust between the
hardware subsystems and kernel operations. Even when zero trust models are implemented in user space,
todays kernels (and kernel variants) rely on implicit trust to function.

Virtualization attack vectors have become more sophisticated focusing on virtual machine attacks (break
out), hypervisor attacks (blue pill) and compromised hardware (malicious hardware).

Over the last years several hardware and software technologies have been made available, including VT-
d, Authenticated boot, Trusted Platform Modules (TPM), Trusted boot (tboot), SELinux, sVirt,
AppArmor, OAT SDK (remote attestation toolkit) and Trusted Execution Technology (TXT) to make
platforms more secure.

Additional technologies are available or emerging including TrustZone (ARM/AMD) and Software
Guard Extensions (Intel SGX).

SOME ATTACK VECTORS –
POTENTIAL REMEDIATION

VECTOR
Modified Hardware (malicious)
Foreign Hardware (unauthorized/ malicious)
Side channel attacks (breakout of confinement)
Hypervisor modification (malicious code)

-- Intel terminology used (not meant to be exclusive)

Authenticated boot / Static measurement w/TPM
Intel VT-d (AMD IOMMU) prevents raw PCI access
SELinux, sVirt, AppArmor, Seccomp2
Trusted Execution Technology (TXT) / tboot / Remote attestation

Several hypervisors are available (OpenStack supports many variants) not all are equally secure

Potential Remediation
SRTM - Static Root of Trust for Measurements (authenticated boot) with TPM is a mature technology. Hardware may be attested at
boot time, however, SRTM requires keeping measurements of the entire platform boot sequence including BIOS config, 3rd party
boot ROMs (e.g. network cards). Any change to the environment requires new measurements (which are disruptive and complex to
maintain).

DRTM - Dynamic Root of Trust for Measurements (tboot) utilizes TXT and TPM. It can verify the hardware and software
(hypervisor) have not been tampered with on boot and can take direct action (halt). While it can replace SRTM they may also be
used together allowing SRTM to provide a key measurements (PCR0/1) while DRTM provides the remainder of the measurements
without ‘loading’ down the attestation process.

Utilizing Intel TXT and TPM the OpenAttestationToolkit (OAT) provides Remote Attestation and “Trusted Compute Pools”
(implementation as a Security Console)

SO WE HAVE “TRUSTED HOSTS”
EVERYTHING IS GOOD – RIGHT?

Implementation in OpenStack/OPFNV is set by trusted_filter flag in the abstract scheduler for a VM.
Change the flag in memory and the VM is no longer required to run in a trusted environment.
Alter the scheduler to ignore the flag, while reporting everything is ‘OK’.
OAT (SDK) uses certificates.

Binary trust model – hosts / hypervisors are either trusted or not. Currently there is no available implementation of a
hierarchal trust model.

VMs with the trusted flag set can only run on trusted hosts (attested), however untrusted VMs (no flag set) can also run
on trusted hosts.

Only Compute nodes (NOVA) support remote attestation. Management and storage nodes do not support natively.

Neutron (networking service) runs on unattested hosts. Compromise of management and storage nodes adds to attack
surface.

Similar to hardware trust model issues, the virtualization administrators have nearly unlimited power.

SO WE HAVE TRUSTED COMPUTE POOLS –
EVERYTHING IS GOOD – RIGHT?

Revoking trust on a running host leaves trusted VMs operational (they continue to run)

Compute pools are managed by a “security station”, which now becomes the target. OAT for OpenStack requires
SELINUX to run in permissive mode by default.

In general SELinux / sVirt / AppArmor rules are deficient. Either missing or set so loose as to reduce the value of
confinement

Shared memory represents risks for leakage or exposure of sensitive data (KSM)

High performance networking solutions (Intel DPDK) have security considerations (shared VM+GuestOS memory or
disabling of confinement).

Hypervisor choice matters:

Baremetal (Ironic)- still early in development lifecycle, under/over cloud implementation does not support
SELinux/sVirt out of the box. PXE+TFTP loading not secure. Ironman plugin available
KVM - under/over cloud implementation does not support SELinux/sVirt out of the box.
QEMU – hardening guide specifically mentions as a risk, however high performance solutions continue to
use/require it
LXD/LXC - containers will always (by design) share the same kernel as the host. Therefore, any vulnerabilities
in the kernel interface, unless the container is forbidden the use of that interface (i.e. using seccomp2) can be
exploited by the container to harm the host.

SOME THOUGHTS

Virtual environments create new challenges for security, it is not the same old world just running on a
hypervisor.

Several technologies now exist to help create more secure virtual environments that start with the basic
concept of ‘hardware root of trust’, through booting trusted hypervisors and virtual machines (containers,
etc). However due to implementation issues these are not as secure as they seem at first review.

Vendors need to be encouraged to use available technologies as “default”.
(random sampling shows TXT is not enabled and in several cases VT-d was disabled)

The release of the OAT as an SDK was done to enable commercial development (BSD license). It does not
appear that this has been embraced, instead the absolute minimum has been done to ‘check the box’.

The binary trust zone issue should be addressed.

Need to work with Open Source communities to encourage better security models using available technology.

Thank You !

