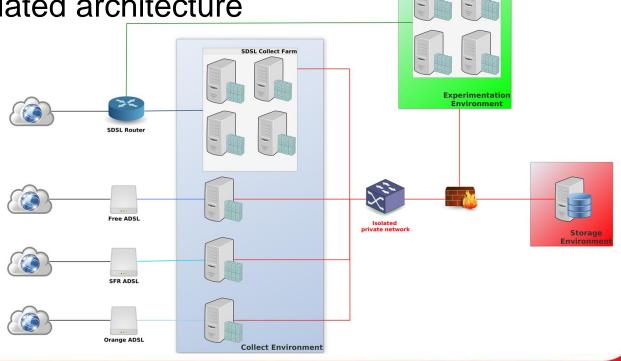


Security monitoring in Internet: the use case of Phishing

Jérôme François jerome.francois@inria.fr


MADYNES Nancy – Grand Est Research Centre

Overview How we monitor security in Internet?

Inría

Network telescope

- Objective: collect attack traces from Internet without being seen as a research institute
 - Multi-provider architecture
 - 3 public ADSL with different providers
 - 1 SDSL 2Mbits with a /24 network
 - Virtual and isolated architecture

Experimentation Farm

Honeypots and sensors

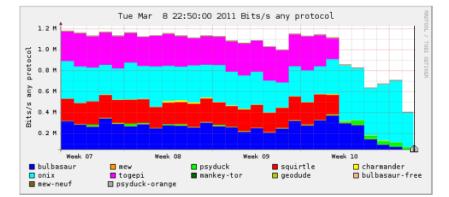
- Being attacked and monitor them
 - Expose vulnerabilities (honeypots)
 - 1 instance of each deployed in the current deployment
 - Dionaea: RPC/Netbios, HTTP, FTP/TFTP, SIP/VoIP, MSSQL
 - Amun: Vulnerabilities emulated via python plugins
 - **Kippo:** Brute-force SSH always works and access to minimalistic shell sessions and brute-force attempts are logged
 - Conpot: ICS/SCADA Honeypot
 - Glastopf: WEB applications honeypot
 - + monitoring sensors
 - **Snort + snort_hpfeeds:** Intrusion detection on the whole SDSL /24 IP range, Collector for shipping snort alerts using hpfeeds
 - Network Traffic: PCAP, Netflow
 - Syslog

Some numbers

Operational since the 09th of September 2008

• Total (29/10/2014)

- 901 832 393 attacks
- 368 984 073 malicious attacks
- 38 878 269 malwares captured
- 301 013 unique binaries


Daily (on a 800 Kbit/s bandwidth)

- 500 000 attacks 300 000 malicious
- 25 000 binaries captured

Network traces

- 15 To of PCAP traces
- 240 Go of NetFlow flows (v5 et v9)
- 6 Go of anonymized Tor flows

Dashboard

password	Count
123456	7320
!@	5470
password	3641
1234	2481
ubnt	2071
12345	1707
123	1673
	1384
test	1375
1	1243
admin	1120
qwerty	1109
123qwe	1059

Geographic location of attacks

Most used SSH passwords

2

Towards proactive monitoring

The use case of phishing

A Joint work with the Univ. of Luxembourg – SnT (Samuel Marchal, Radu State, Thomas Engel)

What is Phishing ?

- Use of technical subterfuges and social engineering to steal any kind of valuable Internet users' data:
- Cause billions of dollars of loss every year
- Blacklists exist but updates might appear too late
 - Unknown URL \rightarrow predict in advance them
 - URL verification in progress \rightarrow speed up the process

Phishing URLs characteristics

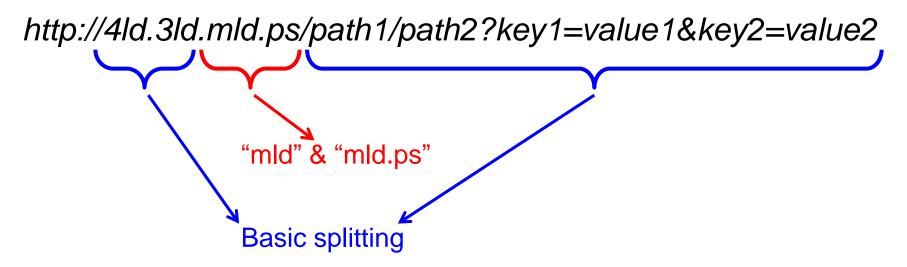
www.paypal.creasconsultores.com/www.paypal.com/Resolutioncenter.php shevkun.org/css/paypal.com/cgi-bin/cmd%3D_login-submit/css/websc.php us-mg6.mail.yahoo.com.dwarkamaigroup.com/Yahoo.html emailoans hostingventure.com.au/bankofamerica.com nitkowski.pl/components/wellsfargo/questions.php

The registered domain has no relationship with the rest of the URL

http://4ld.3ld.mld.ps/path1/path2?key1=value1&key2=value2

- Most parts of URLs can be freely defined
- Except the registered domain: main level domain + public suffix

Proposition for phishing URLs detection

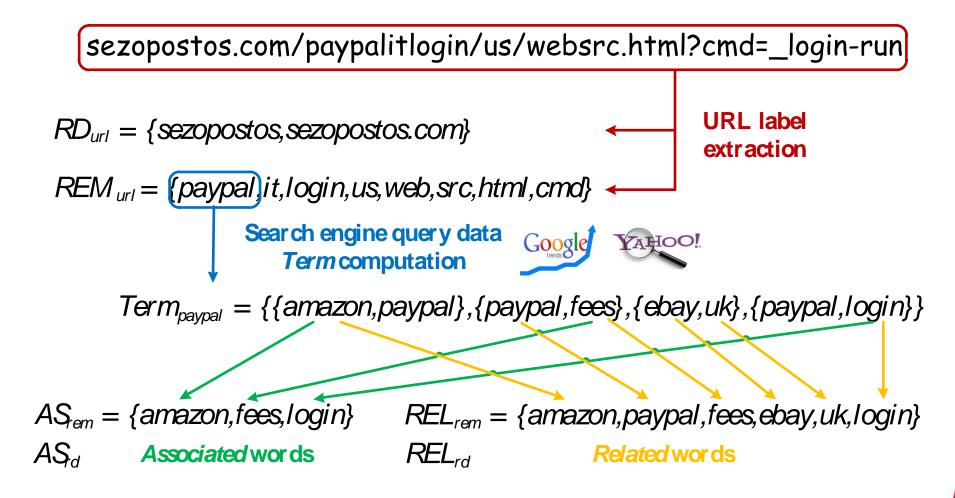

Assumptions:

- Components of legitimate URLs are all related
- Registered domains (mld.ps) of phishing URLs are not related to the remaining of the URL
- URL vocabulary ~ Internet vocabulary: differs from natural text

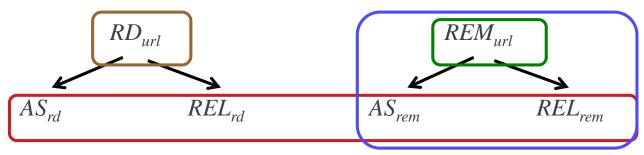
Analyse relatedness between *mld.ps* and the remaining part of a URL : Intra-URL relatedness

URL splitting

URL label extraction:



login.paypal.com/securepayment


- $RD_{url} = \{paypal; paypal.com\}$
- *REM_{url}* = {*login; secure; payment*}

Intra-URL relatedness evaluation

Features set

Word set relatedness (Jaccard index)

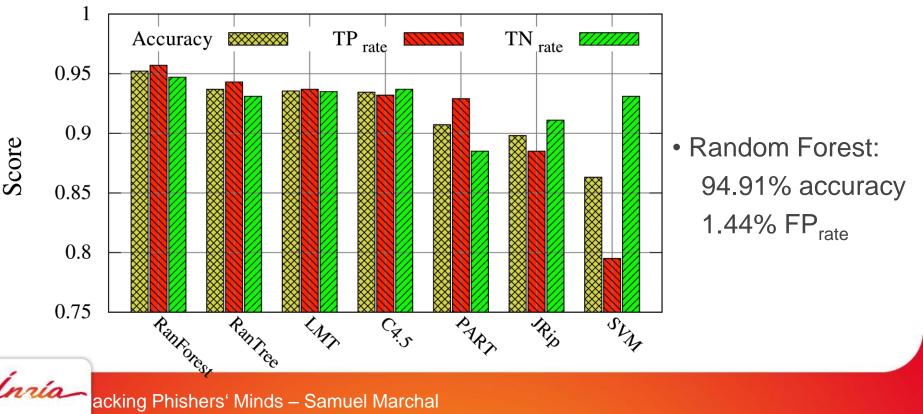
$$egin{array}{ccc} J_{RR} & J_{RA} & J_{AA} \ J_{AR} & J_{ARrd} & J_{ARrem} \end{array}$$

Popularity of words in URL

*ratio*_{Arem} ratio_{Rrem}

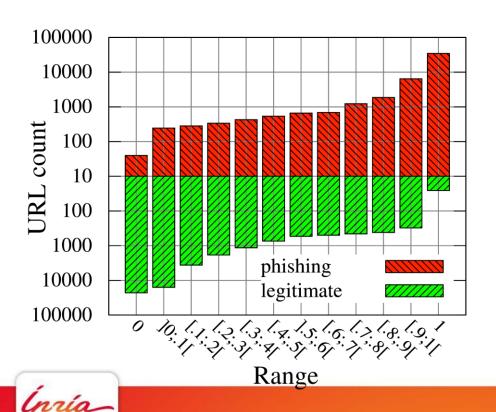
Ínría_

Words embedded in URL


card_{rem}

Popularity of the registered domain

mld_{res} mld.ps_{res} ranking


URL classification

- Machine learning approach:
 - 48,009 phishing URLs (source: PhishTank)
 - 48,009 legitimate URLs (source DMOZ)
 - Determine the best classifier to identify phishing URLs
 - 7 classifiers tested: Random Forest, C4.5, JRip, SVM, etc.
 - 10-fold cross-validation on the presented feature set (96,016 URLs)

URLs rating

- 7 classifiers tested: Random Forest, C4.5, JRip, SVM, etc.
- 10-fold cross-validation on 96,016 URLs (legitimate / phishing)
- Random Forest based rating system:
 - Strong decision: 95.66% accuracy
 - Processing time < 1 sec/URL

- 0: 22,863 legitimate // 40 phishing
- 1: 26 legitimate // 34,790 phishing

99.89% accuracy on 60.11% of the dataset

• [0;0.1] and [0.9;1]

99.22% accuracy on 83.97% of the dataset

Conclusion

Inría

Conclusion

- Semantic analysis is not always fully discriminative
 - URL rating system: >99% accuracy for > 80% URLs
 - Guide URL verification

•Need to be coupled with more in-depth analysis of web page content (code inspection, binary download, visual perceptions, etc)

•our approach ~ a filter to focus (and so speed up the analysis)

References

- PhishScore: Hacking phishers' minds. CNSM 2014
- PhishStorm: Detecting Phishing With Streaming Analytics. IEEE Transactions on Network and Service Management (2014)

Security monitoring in Internet: the use case of Phishing

Jérôme François jerome.francois@inria.fr

MADYNES Nancy – Grand Est Research Centre