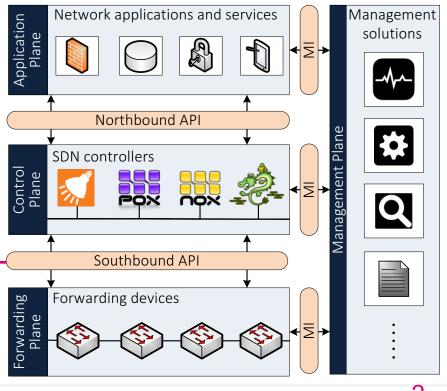
Interactive Monitoring, Visualization, and Configuration of OpenFlow-Based SDN

Student: Pedro Heleno Isolani Advisor: Steven Latré Co-Advisor: Lisandro Zambenedetti Granville



Motivation – SDN Architecture

- I. Network control and forwarding planes are clearly decoupled
- II. Forwarding decisions are flowbased instead of destination-based
- III. The network forwarding logic is abstracted from hardware to a programmable software layer
- IV. An element, called controller, is introduced to coordinate network-wide forwarding decisions

The most relevant SDN implementation

Motivation – Control Channel Issues

SDN reduces or even eliminates some traditional management problems [1]

- *E.g.*, enabling network configuration in a high level language
- *E.g.*, providing support for enhanced network diagnosis and troubleshooting

Monitoring, Visualization, and Configuration can be considerably different from traditional networks

- *E.g.*, SDN controller behavior impacts on resource consumption and forwarding performance

Centralized controller creates bottlenecks at the control channel [7]

Devoflow [8] and **DIFANE [9]** attempted to alleviate these bottlenecks by distributing the control logic of OpenFlow

How OpenFlow control messages can be used without affect network performance?

Motivation – Control Channel Issues

Moreover...

SDN proposals use monitoring information to automate tasks

- E.g., reduce control traffic overhead [2] [3] [4]
- E.g., protecting the network [5] [6]

In what proportion the SDN controller behavior can affect both resource consumption and traffic forwarding performance?

No solution is available to integrate monitoring information with interactive visualization and configuration tools for SDN

Contributions

I. Quantify overheads imposed by OpenFlow messages on the control channel

Control Channel Analysis

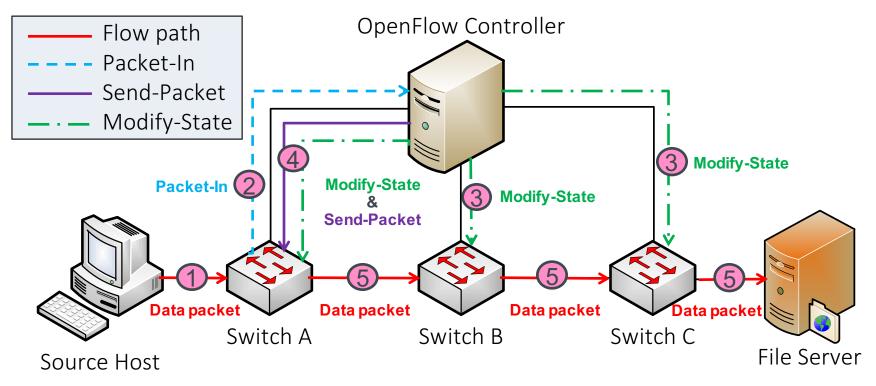
II. Propose an interactive approach to SDN management through monitoring, visualization, and configuration including the administrator in the management loop

Interactive approach through monitoring, visualization, and configuration

Control Channel Analysis

Quantify overheads imposed on the control channel

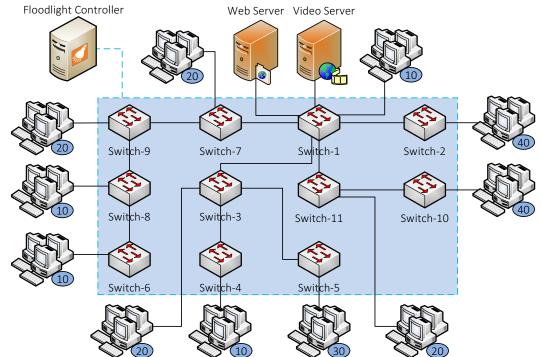
- OpenFlow v.1.0
- Controller's Forwarding behavior implementation
- Compus network scenario


Analyzing

- Control Channel load (installation and monitoring of forwarding rules)
- **Resource Usage** (active and idle rules)
- Note: A rule is considered IDLE when it's counters do not change between two monitoring polls

OpenFlow 1.0 Control Messages

Message Type	Sub-type	Description	
Controller-to-switch	Features	Obtain features and capabilities about the switches	
	Configuration	Set query configuration parameters in switches	
	Modify-State	Manage the state of the switches	
	Read-State	Retrieve statistics about switch tables, ports, flows, and queues	
	Send-Packet	Send packets to a specific switch port	
	Barrier	Ensure message dependencies and receive notifications	
	Packet-In	When a packet do not match with a flow entry or an matched flow entry action is "send to the controller"	
Asynchronous	Flow-Removed	When a flow entry expires in the switch flow table	
Selected sub-types represent 97.78% of the number of messages and 99.70% of the overall control traffic			
Symmetric	Echo	Sent by both controller and switch to establish connectivity	
	Vendor	Functionality to store a staging area for other OpenFlow revisions	


Forwarding Behavior

Scenario

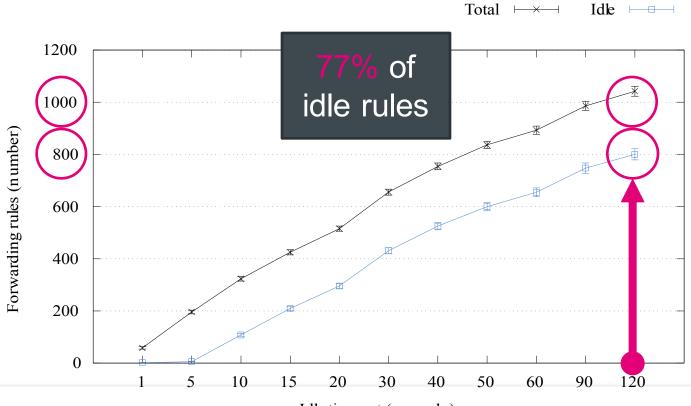
Campus Netwok

- Hosts: 230
- Switches: 11
- Web Servers: 1
- Video Servers: 1
- Controllers: 1
- Controller: Floodlight v.90
- OpenFlow Version: 1.0
- Emulated over Mininet

Workload

User Traffic Profile

- Emulated Internet Traffic

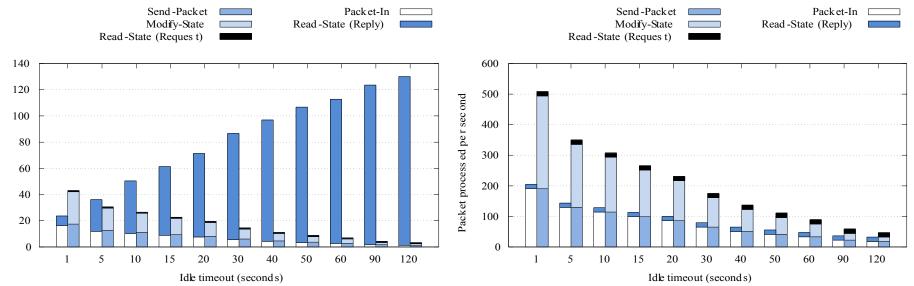

Varied Factor

- Idle timetout configuration

Idle timeout configuration indicates when a forwarding rule can be removed due to a lack of activity

Parameter	Value
Web request size	Lognormal Distribution ($\mu = 11.75, \sigma = 1.37$) Mean: 324 KBytes, Std. Dev.: 762 KBytes
User reading time	Exponential Distribution ($\lambda = 0.033$) Mean: 30 seconds
Video watch time	180 seconds
Video bit rate	300 kbps
Traffic Mix	Video: 75%, Web: 25%
User Mix	1 video user for every 6 Web users
Monitoring	Polling frequency: 5 seconds
Controller behavior	Floodlight's default <i>Forwarding</i> <i>Behavior</i> implementation
Experiment duration	30 min

Forwarding rules


Idle timeout (second s)

Channel Load

Control channel load (kbps)

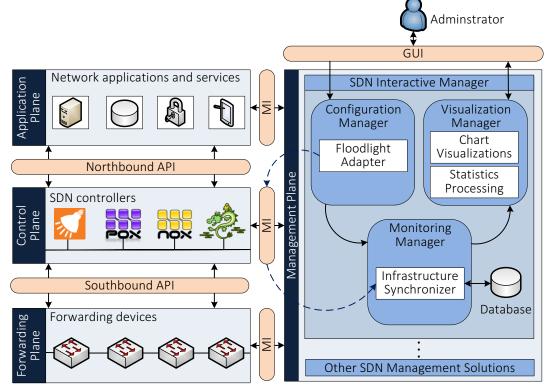
Control channel load x Idle timeout

Packets processed per second x idle timeout

Contributions

I. Quantify overheads imposed by OpenFlow messages on the control channel

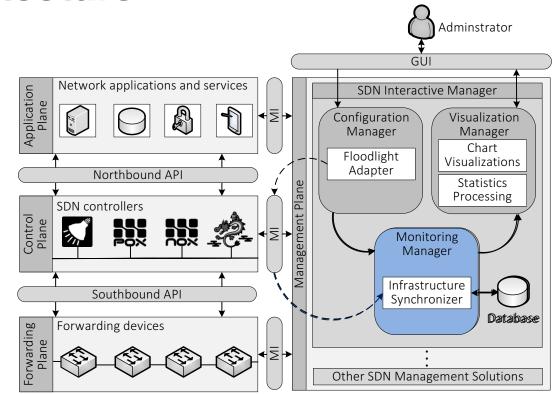
Control Channel Analysis


II. Propose an interactive approach to SDN management through monitoring, visualization, and configuration including the administrator in the management loop

Interactive approach through monitoring, visualization, and configuration

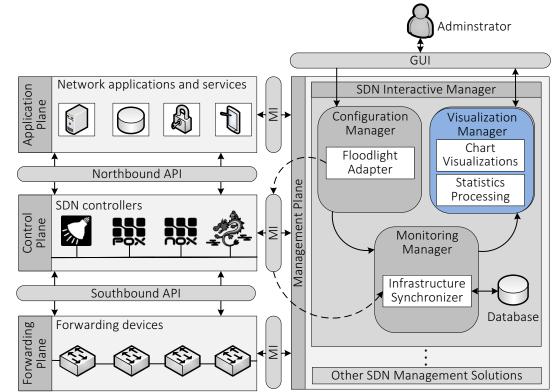
SDN Interactive Manager

- I. Monitoring Manager
- II. Visualization Manager
- III. Configuration Manager

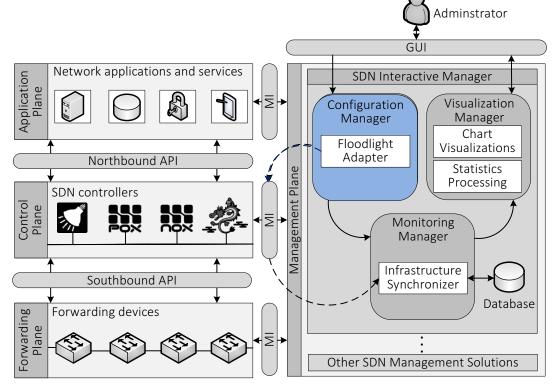

A management loop with the Administrator interactions

14

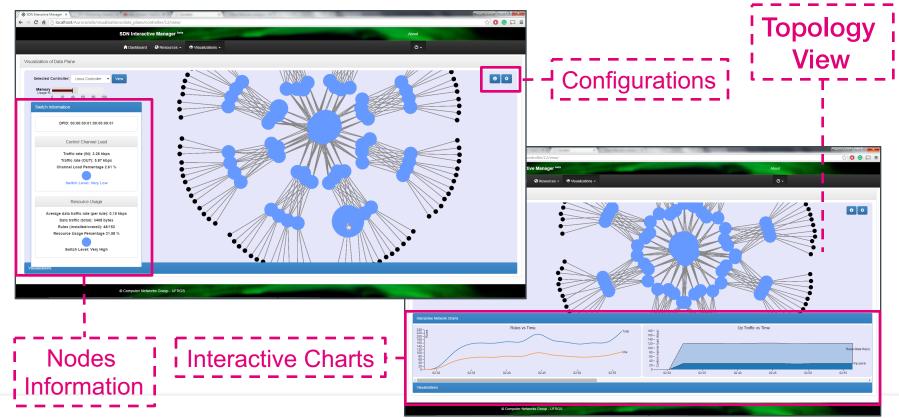
Monitoring Manager Retrieves information about the network and store it in a local database


> Modules Infrastructure Synchronizer

Visualization Manager

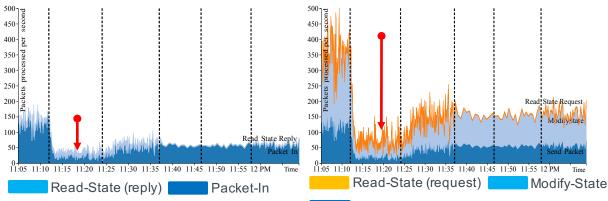

Aggregates data providing interactive visualizations to the administrator

Modules Chart Visualizations Statistics Processing

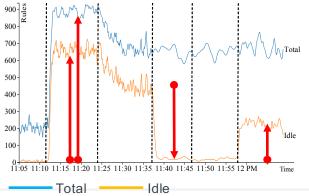


Configuration Manager Checks and configures SDN-related parameters on network controllers

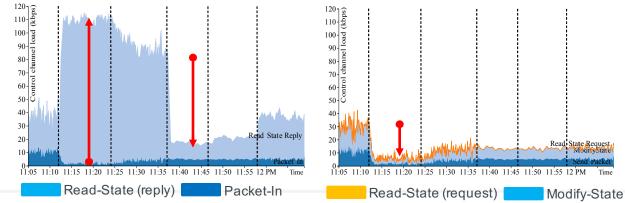
> Modules Floodlight Adapter


Prototype GUI

Packets processed per second x idle timeout



Evaluation



Send-Packet

Rules x idle timeout

Control channel load x Idle timeout

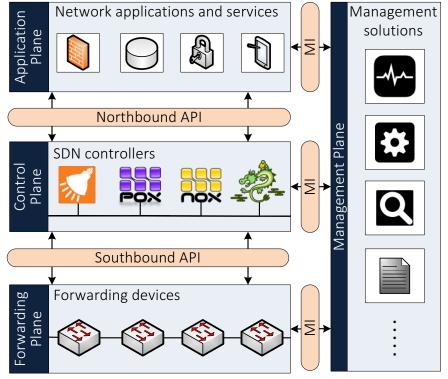
Send-Packet

Conclusions & Open Questions

Control Channel Analysis

- The proportion of both resource usage and control channel load are affected by a single parameter (*i.e.*, **idle timeout of forwarding rules**)

Interactive Monitoring, Visualization, and Configuration


- Retrieve statistics about the control channel traffic
- Allow the administrator to interact with SDN
- Based on interactive visualizations, administrators are able identify potential issues and change configurations of SDN parameters

Conclusions & Open Questions

Deal with control channel was not so simple!

- Different controller implementations
- Control channel counters are not addressed
- Absence of a common Management Interface (MI).

A standardization process for the MIs could foster the development of SDN management solutions

References

[1] H. Kim and N. Feamster, "Improving Network Management with Software Defined Networking," IEEE Communications Magazine, vol. 51, no. 2, pp. 114–119, February 2013.

[2] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V. Madhyastha, "FlowSense: Monitoring Network Utilization with Zero Measurement Cost," in *Proceedings of the 14th International Conference on Passive and Active Measurement* (PAM), March 2013, pp. 31–41.

[3] S. Chowdhury, M. Bari, R. Ahmed, and R. Boutaba, "PayLess: A low cost network monitoring framework for Software Defined Networks," in *Proceedings of the 14th IEEE/IFIP Network Operations and Management Symposium* (NOMS), May 2014, pp. 1–9.

[4] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, "OpenTM: Traffic Matrix Estimator for OpenFlow Networks," in *Proceedings of the 11th International Conference on Passive and Active Measurement* (PAM), April 2010, pp. 201–210.

[5] Y. Zhang, "An Adaptive Flow Counting Method for Anomaly Detection in SDN," in *Proceedings of the 9th ACM Conference on Emerging Networking Experiments and Technologies* (CoNEXT), December 2013, pp. 25–30.

[6] L. Jose, M. Yu, and J. Rexford, "Online Measurement of Large Traffic Aggregates on Commodity Switches," in *Proceedings of the 11th USENIX Conference on Hot Topics in Management of Internet, Cloud, and Enterprise Networks and Services* (Hot-ICE), October 2011, pp. 13–13.

[7] S. Hassas Yeganeh and Y. Ganjali, "Turning the Tortoise to the Hare: An Alternative Perspective on Event Handling in SDN," in *Proceedings of the 2014 ACM International Workshop on Software-defined Ecosystems* (BigSystem), June 2014, pp. 29–32.

[8] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S. Banerjee, "DevoFlow: Scaling Flow Management for Highperformance Networks," in *Proceedings of the ACM SIGCOMM 2011 Conference*, August 2011, pp. 254–265.

[9] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, "Scalable Flow-based Networking with DIFANE," in *Proceedings of the ACM SIGCOMM 2010 Conference*, August 2010, pp. 351–362.

THANK YOU FOR YOUR TIME

Student: Pedro Heleno Isolani Advisor: Steven Latré Co-Advisor: Lisandro Zambenedetti Granville E-mail: phisolani@inf.ufrgs.br Website: www.inf.ufrgs.br/~phisolani