
The	abstract	art	of	composing	
SDN	applications

Pedro	A.	Aranda – Telefonica
pedroa.aranda@telefonica.com



Programmable	and	virtualized	
networks...

• bring	new	enablers	
• create	new	opportunities	
• but	also	new	challenges	and	requirements	for	
their	control	and	management.	
– more	versatility	
– more	automation,	
– new	interactions/control	models...



Therefore...	

• Management	of	these	networks	need	to	
evolve	

• So...	what	are	the	foreseeable	evolution	
paths?	
– Treat	network	functions	as	software	libraries	
– Better	abstractions		
– Integration	of	machine	learning	mechanisms	



Compose-ability	of	network	functions	

• AKA	Application	composition	
• The	purpose	is	to	integrate	SW	development	
techniques	into	the	network	creation	process	

• SDN	applications	yhat	work	should	not	be	
thrown	away	

• In	comes	the	NetIDE	architectire	



Application	composition	- II	

• But	wait	a	second...	this	sort	of	looks	like	e.g.	
i2rs	

• So	it	actually	boils	down	to	multi-headed	
environments	
– ie.	multiple	independent	applications	addressing	
the	same	network	resurce	

• But	wait...	this	spells	out	CONFLICT	



Application	composition	- III	
• Example	of	conflict	
– Two	different	applications	in	an	i2rs	environment	try	
to	set	different	next-hops	for	a	prefix	in	a	box	

– Hot	topic:	is	assigning	different	priorities	to	the	
applications	enough?	

• Other	implications	
– Nice:	Application	composition	may	simplify	the	design	
of	network	elements	

– However:	we	need	a	framework	with	well-defined	
semantics		

– Example:	what	if	a	block	is	silent?	



Integration	of	machine	learning	
mechanisms	

• So...	if	we	have	SDN	controllers	gathering	
information	from	the	network...		

• Why	don't	we	just	use	that	information	in	a	really	
intelligent	way?	
– But	what	is	really intelligent?	
– Learning	from	the	past?	
– Since	we	humans	have	a	hard	time	doing	that,	why	
not	using	machines	

– In	comes	machine	learning	techniques	to	solve	
complex	issues	



Integration	of	ML	systems	- II	

• So...	we	have	the	SDN	controller	
– It	gathers	information	about	the	nework	
• Statistics	
• Input	events	



Integration	of	ML	- III	
• What	if	we	feed	all	this	information	into	a	ML	system?	
• We	could	train	it	to	detect	complex	events	from	
different	contexts	
– Note	that	this	is	something	that	would	be	very	complex	to	
implement	as	an	App	running	in	the	SDN	Controller	

• This	trained	system	could	actually	talk	to	different	Apps	
running	in	the	controller	and	coordinate	them	

• But	how	could	we	do	that	
– This	actions	would	be	very	high	level	
– In	comes	*Intent*	as	a	possible	way	of	represent	these	
high	level	actions	



Better	abstractions		

• I	will	try	to	be	provocative...	
• But	not	too	much	



Intent	

• Let	me	start	with	NON-intents	
– (Java,	Python)	Libraries	are	NOT	intent	
– They	are	just	(low	level)	abstractions	
–What	purpose	do	they	serve	in	an	NBI	of	an	SDN	
controller?	



So	what	should	Intent	be?	- I	

• "A	framework	to	express	network	control	
desires as	policies..."	

• A	model	that	describes	requests	to	alter	
network	behaviour	

• All	good	and	nice	and	a	very	first	step	in	the	
right	direction	
– As	long	as	the	resulting	construct	is	*not*	just	
another	library	



What	should	Intent	be?	- II	
• SDN	controller	independent	NBIs	with	focus	on	semantics	and	data	

models	
– Declarative?	
– Imperative?	

• Human	readable	and	understadable	(e.g.	IBNEMO)	
– Nice	for	early	adoption	and	debugging	
– However,	should	that	be	a	must?	
– Nice	approach	that	may	be	copied	by	new	initiatives	

• Minimalistic	approach:	20%	of	the	language	constructs	that	covers	80%	of	the	
use	cases	

• Build	on	models	(e.g.	ODL-NIC)	
– Support	of	YANG	models	seems	to	be	ubiquitous	
– Minimalistic	approach:	something	simple	and	filter	through	reality	



Conclusion	

Or	was	it	the	other	way	round?	

Adopt SW	
development in	
networking

Machine	learningIntent


