SDN Architecture and Use Case for PCE-based Central Control

draft-zhao-teas-pce-control-function-01
draft-zhao-pce-central-controller-user-cases-01

Adrian Farrel
Quintin Zhao
Robin Li
Chao Zhou
Cyril Margaria
Sudhir Cheruathur
Dhruv Dhody
Daniel King
Iftekhar Hussain
Anurag Sharma
Eric Wu
What is a PCE?

• PCE: Path Computation Element
 • “An entity (component, application, or network node) that is capable of computing a network path or route based on a network graph and applying computational constraints” from RFC 4655.

• That means that a PCE is a functional component in an abstract architecture.
 • It’s purpose is to determine paths though a network
 • It operates on a topology map (the Traffic Engineering Database – TED)
 • It can be realised as a component of an existing device or as a dedicated server (or virtualised service)

• Benefits of the PCE
 • Offload CPU-heavy computations
 • Provide advanced and sophisticated algorithms
 • Coordinate computation across multiple paths
 • Operate on an enhance TED

• Primary initial purpose was for Traffic Engineered MPLS LSPs
 • Rapidly picked up for optical transport networks

• One of the earliest south-bound protocols – Path Computation Element Protocol – to be implemented in various Open Source Controller platforms
The PCE evolved very quickly after it was invented
 • Advanced PCEP encodings for non-packet environments
 • PCEP extensions for coordinated path computations
 • Path protection
 • Network re-optimisation
 • Cooperating PCEs for multi-domain applications
 • Applicability to sophisticated services such as point-to-multipoint
 • Hierarchical PCE for selection of paths across multiple domains
 • PCE Evolution continues today within the SDN Controller projects
What is the relationship with SDN?

• What is the relationship with SDN?
 • PCEP can be considered the earliest SDN southbound protocol
 • PCE is an SDN controller plus the application logic for path computation
 • PCE provides end-to-end paths (when requested)
 • PCC installs a received path specification
 • An MPLS-TE network could be considered to be an SDN-based network if:
 • MPLS LSRs are built with full separation of control and forwarding planes
 • LSR performs exact match on a single field in the packet header
 • LSR processing is simple: stack operation and forward without routing protocols (e.g., MPLS-TP)
 • All paths are configured from a central platform via a control plane
Stateful & Active PCE

• A Stateful PCE is aware of other LSPs in the network
 • A PCE could retain knowledge of paths it previously computed
 • Or it may gather information about LSPs as exported from the network
 • “Yes, I used that path you gave me”
 • “Here are some other LSPs I know about”
• An Active PCE is able to advise the network
 • About more optimal paths
 • When congestion is a problem
• As far as the protocol is concerned, it is only a small step
 • The PCC can say “Please worry about these LSPs for me.”
 • Delegation of LSPs from the PCC to the PCE
 • The PCE can say “Here is a path you didn’t ask for.”
 • For delegated LSPs or for new LSPs
Architectures for PCE as the Central Controller

- Using a PCECC to augment a distributed control plane

- Using PCE for Node-by-Node Central Control
Multiple PCECCs on a Partitioned Network

- Using cooperating PCECC-based controllers for horizontal control

- Hierarchical PCECC controllers
PCECC Use Cases

• Control Plane Operated Networks
 • A common approach for an active, stateful PCE to control a traffic engineered MPLS or GMPLS network

• Static MPLS-based Label Switch Paths
 • Provisioned without the use of a control plane

• Transport SDN
 • MPLS-TP, TE-based Optical Networks

• Traffic Classification
 • What traffic to send on the LSP

• Detailed discussion on the Use Cases for Using PCE as the Central Controller(PCECC) may be found in:

• Mobile backhaul example discussed this week in TEAS