draft-peterson-sipbrandy-rtpsec

Jon Peterson SIPBRANDY WG IETF 96 (Berlin)

Media Confidentiality with SIP

• Goal: show practices for establishing media confidentiality for sessions set up with SIP

- Targeting BCP status

- Why?
 - PERPASS (RFC7258)
 - Hopefully influence implementation and/or policy
 - More prescriptive than descriptive, like PERPASS itself
 - Also, as we put this together, we will identify gaps
 - Story here is pretty good, but there are limitations

Two Pronged Strategy

- Divides into two confidentiality methods
 - Comprehensive protection
 - Use STIR (successor to RFC4474)
 - STIR object signs media fingerprints in SDP
 - Binds keys to the SIP-layer identities signed by STIR
 - Opportunistic security
 - Use draft-johnston-dispatch-osrtp
 - Offer AVP rather than SAVP, but provide key info in SDP
 - This document normatively relies on OSRTP

Applicability of STIR to this

- STIR revises the RFC4474 SIP Identity header
 - Scope narrowed to prevent impersonation for a set of specific threats (e.g. robocalling)
 - MitM protections not in scope
 - However, does provide the mky field as a hook
- Provides an authentication service abstraction that signs SIP requests
 - Can be implemented at endpoints or intermediaries
 - Signed at intermediaries, media protection is not E2E
 - Fine for STIR's threat model, not great for media sec
 - Verifiers have no real way to tell if the sig is E2E

Connected Identity

- STIR (and original RFC4474) only signs SIP requests
 - No signatures over SIP responses
- Elwell's RFC4916 patches this
 - UPDATE in the backwards direction sent after a PRACK or a 2xx
 - Or re-INVITE in an established dialog
 - RFC4916 lets the UAS alter To/From to show who you actually connected to
 - Also allows SDP for early media in these requests
- RFC4916 would need some post-STIR tweaks
 - Basically, though, this is a blueprint for signing SDP in the backwards direction for media confidentiality

Media Security

- OSRTP allows DTLS-SRTP, MIKEY, ZRTP, sdesc — People defend MIKEY for some corner cases
- This specification deprecates sdesc entirely
- Ultimately, need some MTI for a BCP
 - In this case, that is DTLS-SRTP
 - Provide options (MAY) for others, including ZRTP
- This BCP and OSRTP should be aligned on these
 - Though OSRTP can non-normatively describe existing deployments

The -01

- Filled in a few blanks
- We've been collecting some requirements
- Want to make sure we've caught 'em all
 - Confidentiality for conferencing
 - Right now points to perc-double
 - There's a nod to B2BUA behavior (RFC7879)
 - Warnings about SIPREC (RFC7245)
 - Better text about anonymity and its STIR interaction

The E2E STIR Profile

- Articulates a STIR profile for endpoints
- Requires UAs to have their own certs
 - And to implement both the authentication and verification roles of STIR
 - STIR allows intermediaries to perform those roles and they still could here, multiple Identity headers allowed

- Getting certs is something that will need some work

- We're planning an ACME use case around this
 - Need one for SIP URIs and one for TNs, realistically
- Or...

"Opportunistic" STIR

- STIR could sign requests without vouching for the originator's identity
 - Added some "don't rule this out" text to rfc4474bis
 - Would provide an auth service sig over the key fingerprints/hashes in SDP without identity
 - Ideally implemented in endpoint auth services
 - Use self-signed keys for trust on first use
 - Can be supplied in addition to a "real" Identity header
- Does it add any real benefit over simple OSRTP?
 - Shows that media keys have not been tampered with in transit (at least since they were signed...)
 - Basically with TOFU trust of auth services

Alignment with WebRTC

- Ideally, e2e SRTP should work when gatewaying SIP to WebRTC
 - Assuming some kind of STIR to IdP gatewaying
 - Cullen took a stab at what that might look like
 - draft-jennings-stir-rtcweb-identity
- But moreover, we want to clone the best practices of e2e SRTP that WebRTC pioneered
 - Consent, and thus ICE
 - Interaction of ICE, early media, and connected identity (RFC4916) a bit complicated
 - More complicated when we want it to work with existing WebRTC implementations

Path Forward

- Depending on how today went, adoption?
- Please to join the list, let's get some eyeballs on it
 - Any requirements we're missing?
 - Had some list comments (thanks Alan)
 - There are some serious TBDs here still
- Want to finish by March, that seems achievable (with some energy)