
RACK: a time-based fast loss recovery
draft-cheng-tcpm-rack-01

Yuchung Cheng
Neal Cardwell

Google

IETF96 Berlin, July 2015

https://tools.ietf.org/html/draft-cheng-tcpm-rack-01
https://tools.ietf.org/html/draft-cheng-tcpm-rack-01
https://tools.ietf.org/html/draft-cheng-tcpm-rack-01

Motivation: simplification

Linux TCP loss recovery: RFC5681, RFC6675, RFC5827, RFC4653, RFC5682, FACK, thin-
dupack, tail loss probe (TLP), ...

Does it need to be that complicated?

Do they even work well?

But most of them share a common rationale ...

2

What is RACK (Recent Ack)?

Monitors the delivery process of every packet (incl. rtx)

A sender sends two packets P1 and P2:

If P2 is delivered, P1 is lost if it was sent more than $RTT + $reo_wnd ago

3

Time

Seq.

4

Packet

Time

Seq.

5

SACK

RTT

Packet

Lost Packet

Lost?

Time

Seq.

6

SACK

RTT

Packet

Lost Packet

RTT + reo_wnd

Time

Seq.

7

SACK

RTT

Packet

Lost Packet

RTT + reo_wnd

Time

Seq.

8

SACK

Packet

Lost Packet

Lost?

Lost?

Time

Seq.

9

SACK

Packet

Lost Packet

RTT + reo_wnd

Time

Seq.

10

SACK

Packet

Lost Packet

RTT + reo_wnd

Time

Seq.

11

SACK

Packet

Lost Packet

Time

Seq.

12

SACK

Packet

Lost Packet

RTT + reo_wnd

Time

Seq.

13

SACK

Packet

Lost Packet

RTT + reo_wnd

Why RACK makes more sense

Tail drops and lost retransmission are common

1. Structured traffic
2. Traffic policing [1]

Need to use every packet’s info

14
[1] An Internet-wide analysis of traffic policing. SIGCOMM 2016

Why RACK makes more sense

Common reorderings:

1. Last (runt) packet of a burst gets delivered first: P4, P1, P2, P3
2. Small out-of-order burst: P[4-6], P[1-3], P[9-11], P7,P8
3. Route becomes shorter: P[21-40], P[1-20]

RACK helps 1,2 but not 3

15

Back to motivation: simplification

Linux TCP loss recovery: RFC5681, RFC6675, RFC5827, RFC4653, FACK, thin-dupack
RACK, tail loss probe (TLP), …

RACK works naturally with TLP (no change)

16

RACK vs FACK exp

FACK [1]

● A packet is lost if end_seq + 3 * mss < highest_sack
● Default on Linux since 2005 (off on after reordering)
● FACK inspired RACK

Multi-days experiment on Google servers near Berlin

1. FACK (control)
2. RACK but disable FACK (exp)

17
[1] Mathis, M. and M. Jamshid, "Forward acknowledgement: refining TCP congestion control", CCR, 1996

RACK vs FACK exp result

RACK significantly reduces stalls in the recovery process

● Disorder state: 82%
● Loss state: 44%
● Recovery state: 7%

Recovery latency reduction: total 4%, mean 11% **

Surprise benefit on TSO: 15% less SACK merge events

** We expect better results with two recent (last friday!) optimizations

18

Status

Code deployed at Google since 2014

● First upstreamed to Linux in 2015
● Timer enhancement soon be upstreamed

Other implementations coming? FreeBSD, Windows

Next steps in IETF

1. WG interest?
2. Merge TLP draft to have ONE loss recovery RFC

19

