
TLS 1.3

draft-ietf-tls-tls13-14

Eric Rescorla

Mozilla

ekr@rtfm.com

IETF 96 TLS 1

Major changes since draft-12
• Remove 0-RTT (EC)DHE and client auth *

• Complete 0-RTT PSK mode *

• Restructure key schedule *

• Add session context *

• Fully define HelloRetryRequest *

• NewSession ticket use flags

• Allow server to send SupportedGroups

• Move CertificateStatus to an extension

• Add ticket age for anti-replay

• Allow resumption after fatal alerts

• Remove non-closure warning alerts

• Add Security Analysis section

IETF 96 TLS 2

0-RTT is now PSK-only

ClientHello

+ early_data

+ pre_shared_key

+ key_share*

(Finished)

(Application Data*)

(end_of_early_data) -------->

ServerHello

+ early_data

+ pre_shared_key

+ key_share*

{EncryptedExtensions}

{CertificateRequest*}

{Finished}

<-------- [Application Data*]

{Certificate*}

{CertificateVerify*}

{Finished} -------->

[Application Data] <-------> [Application Data]

IETF 96 TLS 3

0

|

v

PSK -> HKDF-Extract

|

v

Early Secret --> Derive-Secret(., "early traffic secret", ClientHello)

| = early_traffic_secret

v

(EC)DHE -> HKDF-Extract

|

v

Handshake

Secret -----> Derive-Secret(., "handshake traffic secret", ClientHello + ServerHello)

| = handshake_traffic_secret

v

0 -> HKDF-Extract

|

v

Master Secret

|

+---------> Derive-Secret(., "application traffic secret", ClientHello...Server Finished)

| = traffic_secret_0

|

+---------> Derive-Secret(., "exporter master secret", ClientHello...Client Finished)

| = exporter_secret

|

+---------> Derive-Secret(., "resumption master secret", ClientHello...Client Finished)

= resumption_secret

IETF 96 TLS 4

Session Context

• Multiple requests to include more context when resuming

(Krawczyk, Bhargavan)

resumption_psk = HKDF-Expand-Label(resumption_secret,

"resumption psk", "", L)

resumption_context = HKDF-Expand-Label(resumption_secret,

"resumption context", "", L)

• Merged into handshake hashes whenever used

Hash(Messages) + Hash(resumption_context)

IETF 96 TLS 5

Cookies for HelloRetryRequest

• Derived from DTLS (and originally Photuris)

• Server can provide a cookie with HRR

• Client echoes it with new ClientHello

• Usable for stateless reject by pickling the handshake state in the

cookie

IETF 96 TLS 6

Post-Handshake Key Separation

• General consensus on list to leave as-is

• Analysis from Hugo Krawczyk indicates this is OK

• IMPORTANT: We still have key separation for ordinary-handshake

and app data

IETF 96 TLS 7

Cipher Suite Negotiation: Problem Statement

• The cipher suite negotiation has gotten clunky and non-orthogonal

• Already was bad in 1.2

– Cipher suite, signature algorithms, named groups

• Worse in 1.3

– PSK, key shares

• Can we radically simplify?

IETF 96 TLS 8

Cipher Suite Negotiation: Overview

• Break up into the following axes

– AEAD-PRF

– Signature algorithms

– Key shares/named groups

– PSK

• Negotiate each separately

– Straightforward for public key

– PSK makes things a bit complicated

IETF 96 TLS 9

Public key algorithm negotiation

• Cipher suite just indicates AEAD and PRF

– Probably define new cipher suites

– Added bonus of letting us prune!

• Signature algorithms determines server cert/key and signature

scheme

• Key shares and supported groups determine the key exchange

– Model everything as (EC)DHE

– Server’s key share indicates which group it picked

IETF 96 TLS 10

What about PSK?

• PSK can be combined with (EC)DHE and signatures (new) (?)
enum { psk_ke(0), psk_dhe_ke(1), (255) } PskKeModes;

enum { psk_auth(0), psk_sign_auth(1), (255) } PskAuthModes;

struct {

PskAuthMode auth_modes<1..255>;

PskKeMode ke_modes<1..255>;

opaque identity<0..2^16-1>;

} PskIdentity;

struct {

select (Role) {

case client:

PskIdentity identities<2..2^16-1>;

case server:

PskAuthMode auth_mode;

PskKeMode ke_mode;

uint16 selected_identity;

}

} PreSharedKeyExtension;

IETF 96 TLS 11

Should we change negotiation?

• Cons

– Big change at the last minute

– Makes APIs more complicated because the cipher suite doesn’t

tell you everything

– Doesn’t let you express non-orthogonal options

• Pros

– Much easier to implement (based on initial prototypes)

– Removes odd pairing of (EC)DHE and PSK cipher suites

– More expressive

• Proposal: provisionally adopt pending a PR

IETF 96 TLS 12

Version Negotiation

IETF 96 TLS 13

Alternate Proposal

• Keep ClientHello version number at 3, 3 (TLS 1.2)

• Introduce a new tls version extension

– Semantic is: a list of all supported versions

– Example: [[3, 2], [3, 3], [3, 4], [53, 100]]

• ServerHello contains the negotiated version

• All future versions negotiated this way

– Can fuzz for futureproofing

• Discuss

IETF 96 TLS 14

PSK and Client Auth

• Draft implies support for client authentication even with PSK

mode

– Server just sends CertificateRequest

– Semantics of this are odd.

– 0-RTT is even worse

• Main proposal

– CertificateRequest not allowed when using PSK

– Use post-handshake client auth if you want this

• Fallback proposal

– PSK client auth needs an identity that is “morally the same”

– Then clients can refuse to refresh

• Proposed resolution: ban client auth PSK

IETF 96 TLS 15

Resumption Contexts and 0-RTT Finished

• From the 0-RTT Finished:

– Proof of at least partial liveness of the PSK [via ticket age]

– An integrity check for the information in the ClientHello

• From the resumption context:

– Tie the context from the PSK-establishing connection to

future handshakes.

• Issues

– “0” resumption context for out-of-band PSK is problematic

– This seems duplicative

– Reading the 0-RTT Finished is kind off a pain

– Always adding the PSK context to the hash is clunky

IETF 96 TLS 16

Potential Options

• Remove 0-RTT Finished but use it as resumption ctx

– resumption_ctx = HMAC(., ClientHello)

• Always require 0-RTT Finished even w/o 0-RTT (and include in

the log)

• Always include a special Finished extension when using PSK

– And discard resumption_ctx

– This can be a bit tricky to implement

• Do nothing

• Proposal: ???

IETF 96 TLS 17

Crypto for Embedded 0-RTT Finished (thanks to

Antoine)

Early Secret = HKDF-Extract(0, PSK)

early_finished_secret =

Derive-Secret(Early Secret, "...", ClientHello-prefix)

ClientHello = ClientHello-prefix + HMAC(efs, ClientHello-prefix)

early_traffic_secret =

Derive-Secret(Early Secret, "...", ClientHello)

Alternate, crazy idea:

ClientHello = ClientHello-prefix + AEAD(efs,

ClientHello-prefix,

<stuff>)

IETF 96 TLS 18

Multiple Concurrent Tickets (PR #8)

• Currently we implicitly support multiple tickets

– Useful for de-linkage privacy, etc.

• Ticket encoding gives no guidance about how to use them

– Is ticket N usable after I see ticket N + 1? Try it and see!

• Proposal: Add a field (generation?) to indicate whether a ticket

supersedes others

IETF 96 TLS 19

Last-minute thought: EE in Second Flight

• Should we put an extensions block in client’s second flight?

• Pro

– Only place to put encrypted data from client

– We might really want this later

• Con

– Unspecified semantics

– Not included in HS transcript

IETF 96 TLS 20

Interop Status

IETF 96 TLS 21

Timeline: Option #1 (No big changes)

Aug 8th draft-15: Wire format frozen (“Cryptographer’s version”)

Aug 22nd Implementations of draft-15

Aug 29th draft-16: Revised based on feedback

Aug 29th WGLC

Sep 30th WGLC Ends

IETF 96 TLS 22

Timeline: Option #2 (Change Negotiation or 0-RTT

Finished)

Aug 8th draft-15: Changes agreed at IETF 96

Aug 22nd Implementations of draft-15

Aug 29th draft-16: Revised; Wire format frozen (“cryptographer’s version”)

Sep 12th Implementations of draft-16

Sep 19th draft-17: Revised based on feedback

Sep 19th WGLC

Oct 17th WGLC Ends

IETF 96 TLS 23

