
StackMap: Low-Latency Networking
with the OS Stack and Dedicated NICs
 Kenichi Yasukata (Keio University*), Michio Honda,
Douglas Santry, Lars Eggert (NetApp)

 July 18nd @ IETF TSVAREA

© 2016 NetApp, Inc. All rights reserved. 1

*Work while an intern at NetApp

Overview

 Message-oriented communication over TCP is common
 e.g., HTTP, memcached, CDNs

 Linux network stack can serve 1KB messages only at 3.5 Gbps w/ a single core

 Improve socket API?
 Limited Improvements

 User-space TCP/IP stack?
 Maintaining and updating today’s

complex TCP is hard

© 2016 NetApp, Inc. All rights reserved. 2

 0

 1

 2

 3

 4

1 2 0 4 0 6 0 8 0 1 0 0

T
hr

ou
gh

pu
t [

G
b/

s]

C o n c u r r e n t T C P C o n n e c t i o n s

L i n u x
S e a s t a r
S t a c k M a p

StackMap achieves high performance
with the OS TCP/IP

Background

 Message-oriented communication over TCP (e.g., HTTP, memcached)
 Many concurrent connections
 Small messages
 High packet rates

© 2016 NetApp, Inc. All rights reserved. 3

Request (e.g., HTTP GET)

Response (e.g., HTTP OK)

Message Latency Problem

 Many requests are processed in
each epoll_wait() cycle
 New requests are queued in the kernel

© 2016 NetApp, Inc. All rights reserved. 4

while (1) {
 n = epoll_wait(fds);
 for (i = 0; i < n; i++) {
 read(fds[i], buf)
 http_ok(buf);
 write(fds[i], buf);
 }
}

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

D
es

cr
ip

to
rs

 [
#]

Concurrent TCP Connections

of descriptors returned by epoll_wait()

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100
L

at
en

cy
 [

s
]

Concurrent TCP Connections

99th %ile latency
mean latency

 Processing cost of TCP/IP protocol is not high

 TCP/IP takes 1.48 us, out of 3.75 us server processing

 ½ RTT reported by the client app is 9.75 us
 The rest of 6 us come from minimum hard/soft indirection
 netmap-based ping-pong (network stack bypass) reports 5.77 us

Where Could We Improve?

© 2016 NetApp, Inc. All rights reserved. 5

0.60

HTTP GET (96B)

HTTP OK (127B)

Pkt. I/O TCP/IP Socket/VFS App

0.72 0.53

0.48

0.220.760.43 (us)

 Processing cost of TCP/IP protocol is not high

 TCP/IP takes 1.48 us, out of 3.75 us server processing

 ½ RTT reported by the client app is 9.75 us
 The rest of 6 us come from minimum hard/soft indirection (5.77 us)
 netmap-based ping-pong (network stack bypass) reports 5.77 us

Where Could We Improve?

© 2016 NetApp, Inc. All rights reserved. 6

0.60

HTTP GET (96B)

HTTP OK (127B)

Pkt. I/O TCP/IP Socket/VFS App

0.72 0.53

0.48

0.220.760.43 (us)

epoll_wait() processing delay

Takeaway

 Conventional system introduces end-to-end latency of 10’s to 100’s of us
 Results of processing delays

 Socket API comes at a significant cost
 read()/write()/epoll_wait() processing delay

 Packet I/O is expensive

 TCP/IP protocol processing is relatively cheap

We can use the feature-rich kernel TCP/IP implementation, but
need to improve API and packet I/O

© 2016 NetApp, Inc. All rights reserved. 7

StackMap Approach

 Dedicating a NIC to an
application
 Common for today’s

high-performance systems
 Similar to OS-bypass

TCP/IPs

© 2016 NetApp, Inc. All rights reserved. 8

NIC

Device drivers

Linux packet I/O

Socket API

StackMap appRegular app

u
se

r
ke

rn
el

NIC

TCP/IP/Eth

StackMap Approach

 Dedicating a NIC to an
application
 Common for today’s

high-performance systems
 Similar to OS-bypass

TCP/IPs

 TCP/IP stack in the kernel
 State-of-the-art features
 Active updates and maintenance

© 2016 NetApp, Inc. All rights reserved. 9

NIC

Device drivers

Linux packet I/O

Socket API

StackMap appRegular app

u
se

r
ke

rn
el

NIC

TCP/IP/Eth

StackMap Architecture

© 2016 NetApp, Inc. All rights reserved. 10

NIC

Device drivers

Linux packet I/O

Socket API

StackMap appRegular app

1.

u
se

r
ke

rn
el

NIC

TCP/IP/Eth

netmap framework

Packet buffers

4.

2.

3.

1. Socket API for control path
 socket(), bind(), listen()

2. Netmap API for data path
(extended)

 Syscall and packet I/O
batching, zero copy, run-to-
completion

3. Persistent, fixed-size
sk_buffs

 Efficiently call into kernel TCP/IP

4. Static packet buffers and
DMA mapping

StackMap Data Path API

© 2016 NetApp, Inc. All rights reserved. 11

 TX
 Put data and fd in each slot
 Advance the head pointer
 Syscall to start network stack

processing and transmission
headtail

data, fd

StackMap Data Path API

© 2016 NetApp, Inc. All rights reserved. 12

 TX
 Put data and fd in each slot
 Advance the head pointer
 Syscall to start network stack

processing and transmission

 RX
 Kernel puts fd on each

buffer
 App can traverse a ring

by descriptors

headtail

data, fd

fd4 fd3 fd4 fd4 fd5 fd3

head tail
data, fd

fd4

fd3

fd5

[0]

[2]
[1]

FD Array nxt 2 5 3
5idx 0 1 2 3 4

1

0

4

[3]

[5]
[4]

Scratchpad

 Implementation
 Linux 4.2 with 228 LoC changes
 netmap with 56 LoC changes
 A new kernel module with 2269 LoC

Experimental Results

 Setup
 Two machines with Xeon E5-2680 v2 (2.8

-3.6 Ghz) Intel 82599 10 GbE NIC
 Server: Linux or StackMap
 Client: Linux with WRK http benchmark

tool or memaslap memcached benchmark
tool

© 2016 NetApp, Inc. All rights reserved. 13

Basic Performance

 Simple HTTP server
 Serving 1KB messages (single core)

© 2016 NetApp, Inc. All rights reserved. 14

 0

 2

 4

 6

 8

 0 20 40 60 80 100

T
hr

ou
gh

pu
t [

G
b/

s]

Concurrent TCP Connections

Linux
StackMap

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100

L
at

en
cy

 [
s

]

Concurrent TCP Connections

Linux (99 th %ile)
Linux (mean)
StackMap (99 th %ile)
StackMap (mean)

Memcached Performance

 Serving 1KB messages
 single core
 Seastar is a fast user-space

TCP/IP on on top of DPDK*

 Serving 64B messages
 1-8 CPU cores

© 2016 NetApp, Inc. All rights reserved. 15

 0

 1

 2

 3

 4

1 20 40 60 80 100

T
hr

ou
gh

pu
t [

G
b/

s]

Concurrent TCP Connections

Linux
Seastar
StackMap

 0

 1

 2

 3

1 4 8

T
hr

ou
gh

pu
t [

G
b/

s]

CPU cores [#]

Linux
Seastar
StackMap

 0

 100

 200

 300

 400

1 20 40 60 80 100

L
at

en
cy

 [
s

]

Concurrent TCP Connections

Linux
Seastar
StackMap

*http://www.seastar-project.org/

Discussion

 What makes StackMap fast?
 Techniques used by OS-bypass TCP/IPs

 Run-to-completion, static packet buffers, zero copy, syscall and I/O batching
and new API

 Limitations and Future Work
 Safely sharing packet buffers

 If kernel-owned buffers are modified by a misbehaving app, TCP might fall into
inconsistent state

© 2016 NetApp, Inc. All rights reserved. 16

Related Work

 Kernel-bypass TCP/IPs
 IX [OSDI’14], Arrakis [OSDI’14], UTCP [CCR’14], Sandstorm [SIGCOMM’14], mTCP [NSDI’14],

Seastar

 Socket API enhancements
 MegaPipe [OSDI’12], FlexSC [OSDI’10], KCM [Linux]

 Improving OS stack with fast packet I/O
 mSwitch [SOSR’15]

 In-stack improvement
 FastSocket [ASPLOS’16]

 Running kernel stack in user-space
 Rump [AsiaBSDCon’09], NUSE [netdev’15]

© 2016 NetApp, Inc. All rights reserved. 17

Conclusion

 Message-oriented communication over TCP

 Kernel TCP/IP is fast
 But socket API and packet I/O are slow

 We can bring the most of techniques used by kernel-bypass stacks into the OS stack

 Latency reduction by 4-80% (average) or 2-70% (99th%tile)

 Throughput improvement by 4-391%

© 2016 NetApp, Inc. All rights reserved. 18

How netmap accelerate the OS stack?

 netmap + Open vSwitch kernel datapath (with VALE/mSwitch)
 3x (3.2 Mpps)

 netmap + FreeBSD IP routing (w/ DXR)
 1.6x (2.6Mpps)

 netmap + Linux TCP/IP (i.e., Stackmap)
 3.5x (787Mbps) (for 64B messages)
 Replace socket API in addition to packet I/O

© 2016 NetApp, Inc. All rights reserved. 19

netmap rings/slots and buffers

© 2016 NetApp, Inc. All rights reserved. --- NETAPP CONFIDENTIAL ---20

5 4 3 2 1 0

0 16

11 10 9 8 7 6

spare

netmap rings

netmap buffers

Stackmap Data Path

© 2016 NetApp, Inc. All rights reserved. 21

 On RX, packets are moved from the NIC port ring to a Stack port ring
 Buffers are moved by swapping buffer indices

 In the picture the second packet is identified as out-of-order

 TX is done in a similar way

Netmap Framework Overview

© 2016 NetApp, Inc. All rights reserved. 22

NIC rings
netmap

pipe
VALE/

mSwitch

netmap rings/slots

netmap buffers

NIC port
(eth0)

netmap API (ring operation, ioctl(), poll())

Pipe port
(eth0{)

VALE port
(vale:0)

user

kernel

back-ends

Netmap Framework Overview

© 2016 NetApp, Inc. All rights reserved. 23

NIC rings
netmap

pipe
VALE/

mSwitch

netmap rings/slots

netmap buffers

NIC port
(eth0)

netmap API (ring operation, ioctl(), poll())

Pipe port
(eth0{)

VALE port
(vale:0)

user

kernel

TCP/IP +
NIC port

Stack port
(stack:0)

back-ends

	Slide 1
	Overview
	Background
	Message Latency Problem
	Where Could We Improve?
	Where Could We Improve?
	Takeaway
	StackMap Approach
	StackMap Approach
	StackMap Architecture
	StackMap Data Path API
	StackMap Data Path API
	Experimental Results
	Basic Performance
	Memcached Performance
	Discussion
	Related Work
	Conclusion
	How netmap accelerate the OS stack?
	netmap rings/slots and buffers
	Stackmap Data Path
	Netmap Framework Overview
	Netmap Framework Overview

