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Overview

 Message-oriented communication over TCP is common
 e.g., HTTP, memcached, CDNs

 Linux network stack can serve 1KB messages only at 3.5 Gbps w/ a single core

 Improve socket API?
 Limited Improvements

 User-space TCP/IP stack?
 Maintaining and updating today’s 

complex TCP is hard
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Background

 Message-oriented communication over TCP (e.g., HTTP, memcached)
 Many concurrent connections
 Small messages
 High packet rates

© 2016 NetApp, Inc. All rights reserved.  3

Request (e.g., HTTP GET)

Response (e.g., HTTP OK)



Message Latency Problem

 Many requests are processed in 
each epoll_wait() cycle
 New requests are queued in the kernel
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while (1) {
  n = epoll_wait(fds);
  for (i = 0; i < n; i++) {
    read(fds[i], buf)
    http_ok(buf);
    write(fds[i], buf);
  }
}
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 Processing cost of TCP/IP protocol is not high

 TCP/IP takes 1.48 us, out of 3.75 us server processing

 ½ RTT reported by the client app is 9.75 us
 The rest of 6 us come from minimum hard/soft indirection
 netmap-based ping-pong (network stack bypass) reports 5.77 us

Where Could We Improve?
 

© 2016 NetApp, Inc. All rights reserved.  5

0.60

HTTP GET (96B)

HTTP OK (127B)

Pkt. I/O TCP/IP Socket/VFS App

0.72 0.53

0.48

0.220.760.43 (us)



 Processing cost of TCP/IP protocol is not high

 TCP/IP takes 1.48 us, out of 3.75 us server processing

 ½ RTT reported by the client app is 9.75 us
 The rest of 6 us come from minimum hard/soft indirection (5.77 us)
 netmap-based ping-pong (network stack bypass) reports 5.77 us

Where Could We Improve?
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Takeaway

 Conventional system introduces end-to-end latency of 10’s to 100’s of us
 Results of processing delays

 Socket API comes at a significant cost
 read()/write()/epoll_wait() processing delay

 Packet I/O is expensive

 TCP/IP protocol processing is relatively cheap

We can use the feature-rich kernel TCP/IP implementation, but 
need to improve API and packet I/O
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StackMap Approach

 Dedicating a NIC to an 
application
 Common for today’s 

high-performance systems
 Similar to OS-bypass 

TCP/IPs
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StackMap Approach

 Dedicating a NIC to an 
application
 Common for today’s 

high-performance systems
 Similar to OS-bypass 

TCP/IPs

 TCP/IP stack in the kernel
 State-of-the-art features
 Active updates and maintenance
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StackMap Architecture
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1. Socket API for control path
 socket(), bind(), listen()

2. Netmap API for data path 
(extended)

 Syscall and packet I/O 
batching, zero copy, run-to-
completion

3. Persistent, fixed-size 
sk_buffs

 Efficiently call into kernel TCP/IP

4. Static packet buffers and 
DMA mapping



StackMap Data Path API
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 TX
 Put data and fd in each slot
 Advance the head pointer
 Syscall to start network stack 

processing and transmission
headtail

data, fd



StackMap Data Path API
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 TX
 Put data and fd in each slot
 Advance the head pointer
 Syscall to start network stack 

processing and transmission

 RX
 Kernel puts fd on each 

buffer
 App can traverse a ring 

by descriptors
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 Implementation
 Linux 4.2 with 228 LoC changes
 netmap with 56 LoC changes
 A new kernel module with 2269 LoC

Experimental Results

 Setup
 Two machines with Xeon E5-2680 v2 (2.8 

-3.6 Ghz) Intel 82599 10 GbE NIC
 Server: Linux  or StackMap
 Client: Linux with WRK http benchmark 

tool or memaslap memcached benchmark 
tool
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Basic Performance

 Simple HTTP server
 Serving 1KB messages (single core)
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Memcached Performance

 Serving 1KB messages
 single core
 Seastar is a fast user-space 

TCP/IP on on top of DPDK*

 Serving 64B messages
 1-8 CPU cores
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Discussion

 What makes StackMap fast?
 Techniques used by OS-bypass TCP/IPs

 Run-to-completion, static packet buffers, zero copy, syscall and I/O batching 
and new API

 Limitations and Future Work
 Safely sharing packet buffers

 If kernel-owned buffers are modified by a misbehaving app, TCP might fall into 
inconsistent state
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Related Work

 Kernel-bypass TCP/IPs
 IX [OSDI’14], Arrakis [OSDI’14], UTCP [CCR’14], Sandstorm [SIGCOMM’14], mTCP [NSDI’14], 

Seastar

 Socket API enhancements
 MegaPipe [OSDI’12], FlexSC [OSDI’10], KCM [Linux]

 Improving OS stack with fast packet I/O
 mSwitch [SOSR’15]

 In-stack improvement
 FastSocket [ASPLOS’16]

 Running kernel stack in user-space
 Rump [AsiaBSDCon’09], NUSE [netdev’15]
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Conclusion

 Message-oriented communication over TCP

 Kernel TCP/IP is fast
 But socket API and packet I/O are slow

 We can bring the most of techniques used by kernel-bypass stacks into the OS stack

 Latency reduction by 4-80% (average) or 2-70% (99th%tile)

 Throughput improvement by 4-391%
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How netmap accelerate the OS stack?

 netmap + Open vSwitch kernel datapath (with VALE/mSwitch)
 3x (3.2 Mpps)

 netmap + FreeBSD IP routing (w/ DXR)
 1.6x (2.6Mpps)

 netmap + Linux TCP/IP (i.e., Stackmap)
 3.5x (787Mbps) (for 64B messages)
 Replace socket API in addition to packet I/O
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netmap rings/slots and buffers
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Stackmap Data Path
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 On RX, packets are moved from the NIC port ring to a Stack port ring
 Buffers are moved by swapping buffer indices

 In the picture the second packet is identified as out-of-order

 TX is done in a similar way



Netmap Framework Overview
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Netmap Framework Overview
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