
StackMap: Low-Latency Networking
with the OS Stack and Dedicated NICs
 Kenichi Yasukata (Keio University*), Michio Honda,
Douglas Santry, Lars Eggert (NetApp)

 July 18nd @ IETF TSVAREA

© 2016 NetApp, Inc. All rights reserved. 1

*Work while an intern at NetApp

Overview

 Message-oriented communication over TCP is common
 e.g., HTTP, memcached, CDNs

 Linux network stack can serve 1KB messages only at 3.5 Gbps w/ a single core

 Improve socket API?
 Limited Improvements

 User-space TCP/IP stack?
 Maintaining and updating today’s

complex TCP is hard

© 2016 NetApp, Inc. All rights reserved. 2

 0

 1

 2

 3

 4

1 2 0 4 0 6 0 8 0 1 0 0

T
hr

ou
gh

pu
t [

G
b/

s]

C o n c u r r e n t T C P C o n n e c t i o n s

L i n u x
S e a s t a r
S t a c k M a p

StackMap achieves high performance
with the OS TCP/IP

Background

 Message-oriented communication over TCP (e.g., HTTP, memcached)
 Many concurrent connections
 Small messages
 High packet rates

© 2016 NetApp, Inc. All rights reserved. 3

Request (e.g., HTTP GET)

Response (e.g., HTTP OK)

Message Latency Problem

 Many requests are processed in
each epoll_wait() cycle
 New requests are queued in the kernel

© 2016 NetApp, Inc. All rights reserved. 4

while (1) {
 n = epoll_wait(fds);
 for (i = 0; i < n; i++) {
 read(fds[i], buf)
 http_ok(buf);
 write(fds[i], buf);
 }
}

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

D
es

cr
ip

to
rs

 [
#]

Concurrent TCP Connections

of descriptors returned by epoll_wait()

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100
L

at
en

cy
 [

s
]

Concurrent TCP Connections

99th %ile latency
mean latency

 Processing cost of TCP/IP protocol is not high

 TCP/IP takes 1.48 us, out of 3.75 us server processing

 ½ RTT reported by the client app is 9.75 us
 The rest of 6 us come from minimum hard/soft indirection
 netmap-based ping-pong (network stack bypass) reports 5.77 us

Where Could We Improve?

© 2016 NetApp, Inc. All rights reserved. 5

0.60

HTTP GET (96B)

HTTP OK (127B)

Pkt. I/O TCP/IP Socket/VFS App

0.72 0.53

0.48

0.220.760.43 (us)

 Processing cost of TCP/IP protocol is not high

 TCP/IP takes 1.48 us, out of 3.75 us server processing

 ½ RTT reported by the client app is 9.75 us
 The rest of 6 us come from minimum hard/soft indirection (5.77 us)
 netmap-based ping-pong (network stack bypass) reports 5.77 us

Where Could We Improve?

© 2016 NetApp, Inc. All rights reserved. 6

0.60

HTTP GET (96B)

HTTP OK (127B)

Pkt. I/O TCP/IP Socket/VFS App

0.72 0.53

0.48

0.220.760.43 (us)

epoll_wait() processing delay

Takeaway

 Conventional system introduces end-to-end latency of 10’s to 100’s of us
 Results of processing delays

 Socket API comes at a significant cost
 read()/write()/epoll_wait() processing delay

 Packet I/O is expensive

 TCP/IP protocol processing is relatively cheap

We can use the feature-rich kernel TCP/IP implementation, but
need to improve API and packet I/O

© 2016 NetApp, Inc. All rights reserved. 7

StackMap Approach

 Dedicating a NIC to an
application
 Common for today’s

high-performance systems
 Similar to OS-bypass

TCP/IPs

© 2016 NetApp, Inc. All rights reserved. 8

NIC

Device drivers

Linux packet I/O

Socket API

StackMap appRegular app

u
se

r
ke

rn
el

NIC

TCP/IP/Eth

StackMap Approach

 Dedicating a NIC to an
application
 Common for today’s

high-performance systems
 Similar to OS-bypass

TCP/IPs

 TCP/IP stack in the kernel
 State-of-the-art features
 Active updates and maintenance

© 2016 NetApp, Inc. All rights reserved. 9

NIC

Device drivers

Linux packet I/O

Socket API

StackMap appRegular app

u
se

r
ke

rn
el

NIC

TCP/IP/Eth

StackMap Architecture

© 2016 NetApp, Inc. All rights reserved. 10

NIC

Device drivers

Linux packet I/O

Socket API

StackMap appRegular app

1.

u
se

r
ke

rn
el

NIC

TCP/IP/Eth

netmap framework

Packet buffers

4.

2.

3.

1. Socket API for control path
 socket(), bind(), listen()

2. Netmap API for data path
(extended)

 Syscall and packet I/O
batching, zero copy, run-to-
completion

3. Persistent, fixed-size
sk_buffs

 Efficiently call into kernel TCP/IP

4. Static packet buffers and
DMA mapping

StackMap Data Path API

© 2016 NetApp, Inc. All rights reserved. 11

 TX
 Put data and fd in each slot
 Advance the head pointer
 Syscall to start network stack

processing and transmission
headtail

data, fd

StackMap Data Path API

© 2016 NetApp, Inc. All rights reserved. 12

 TX
 Put data and fd in each slot
 Advance the head pointer
 Syscall to start network stack

processing and transmission

 RX
 Kernel puts fd on each

buffer
 App can traverse a ring

by descriptors

headtail

data, fd

fd4 fd3 fd4 fd4 fd5 fd3

head tail
data, fd

fd4

fd3

fd5

[0]

[2]
[1]

FD Array nxt 2 5 3
5idx 0 1 2 3 4

1

0

4

[3]

[5]
[4]

Scratchpad

 Implementation
 Linux 4.2 with 228 LoC changes
 netmap with 56 LoC changes
 A new kernel module with 2269 LoC

Experimental Results

 Setup
 Two machines with Xeon E5-2680 v2 (2.8

-3.6 Ghz) Intel 82599 10 GbE NIC
 Server: Linux or StackMap
 Client: Linux with WRK http benchmark

tool or memaslap memcached benchmark
tool

© 2016 NetApp, Inc. All rights reserved. 13

Basic Performance

 Simple HTTP server
 Serving 1KB messages (single core)

© 2016 NetApp, Inc. All rights reserved. 14

 0

 2

 4

 6

 8

 0 20 40 60 80 100

T
hr

ou
gh

pu
t [

G
b/

s]

Concurrent TCP Connections

Linux
StackMap

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100

L
at

en
cy

 [
s

]

Concurrent TCP Connections

Linux (99 th %ile)
Linux (mean)
StackMap (99 th %ile)
StackMap (mean)

Memcached Performance

 Serving 1KB messages
 single core
 Seastar is a fast user-space

TCP/IP on on top of DPDK*

 Serving 64B messages
 1-8 CPU cores

© 2016 NetApp, Inc. All rights reserved. 15

 0

 1

 2

 3

 4

1 20 40 60 80 100

T
hr

ou
gh

pu
t [

G
b/

s]

Concurrent TCP Connections

Linux
Seastar
StackMap

 0

 1

 2

 3

1 4 8

T
hr

ou
gh

pu
t [

G
b/

s]

CPU cores [#]

Linux
Seastar
StackMap

 0

 100

 200

 300

 400

1 20 40 60 80 100

L
at

en
cy

 [
s

]

Concurrent TCP Connections

Linux
Seastar
StackMap

*http://www.seastar-project.org/

Discussion

 What makes StackMap fast?
 Techniques used by OS-bypass TCP/IPs

 Run-to-completion, static packet buffers, zero copy, syscall and I/O batching
and new API

 Limitations and Future Work
 Safely sharing packet buffers

 If kernel-owned buffers are modified by a misbehaving app, TCP might fall into
inconsistent state

© 2016 NetApp, Inc. All rights reserved. 16

Related Work

 Kernel-bypass TCP/IPs
 IX [OSDI’14], Arrakis [OSDI’14], UTCP [CCR’14], Sandstorm [SIGCOMM’14], mTCP [NSDI’14],

Seastar

 Socket API enhancements
 MegaPipe [OSDI’12], FlexSC [OSDI’10], KCM [Linux]

 Improving OS stack with fast packet I/O
 mSwitch [SOSR’15]

 In-stack improvement
 FastSocket [ASPLOS’16]

 Running kernel stack in user-space
 Rump [AsiaBSDCon’09], NUSE [netdev’15]

© 2016 NetApp, Inc. All rights reserved. 17

Conclusion

 Message-oriented communication over TCP

 Kernel TCP/IP is fast
 But socket API and packet I/O are slow

 We can bring the most of techniques used by kernel-bypass stacks into the OS stack

 Latency reduction by 4-80% (average) or 2-70% (99th%tile)

 Throughput improvement by 4-391%

© 2016 NetApp, Inc. All rights reserved. 18

How netmap accelerate the OS stack?

 netmap + Open vSwitch kernel datapath (with VALE/mSwitch)
 3x (3.2 Mpps)

 netmap + FreeBSD IP routing (w/ DXR)
 1.6x (2.6Mpps)

 netmap + Linux TCP/IP (i.e., Stackmap)
 3.5x (787Mbps) (for 64B messages)
 Replace socket API in addition to packet I/O

© 2016 NetApp, Inc. All rights reserved. 19

netmap rings/slots and buffers

© 2016 NetApp, Inc. All rights reserved. --- NETAPP CONFIDENTIAL ---20

5 4 3 2 1 0

0 16

11 10 9 8 7 6

spare

netmap rings

netmap buffers

Stackmap Data Path

© 2016 NetApp, Inc. All rights reserved. 21

 On RX, packets are moved from the NIC port ring to a Stack port ring
 Buffers are moved by swapping buffer indices

 In the picture the second packet is identified as out-of-order

 TX is done in a similar way

Netmap Framework Overview

© 2016 NetApp, Inc. All rights reserved. 22

NIC rings
netmap

pipe
VALE/

mSwitch

netmap rings/slots

netmap buffers

NIC port
(eth0)

netmap API (ring operation, ioctl(), poll())

Pipe port
(eth0{)

VALE port
(vale:0)

user

kernel

back-ends

Netmap Framework Overview

© 2016 NetApp, Inc. All rights reserved. 23

NIC rings
netmap

pipe
VALE/

mSwitch

netmap rings/slots

netmap buffers

NIC port
(eth0)

netmap API (ring operation, ioctl(), poll())

Pipe port
(eth0{)

VALE port
(vale:0)

user

kernel

TCP/IP +
NIC port

Stack port
(stack:0)

back-ends

	Slide 1
	Overview
	Background
	Message Latency Problem
	Where Could We Improve?
	Where Could We Improve?
	Takeaway
	StackMap Approach
	StackMap Approach
	StackMap Architecture
	StackMap Data Path API
	StackMap Data Path API
	Experimental Results
	Basic Performance
	Memcached Performance
	Discussion
	Related Work
	Conclusion
	How netmap accelerate the OS stack?
	netmap rings/slots and buffers
	Stackmap Data Path
	Netmap Framework Overview
	Netmap Framework Overview

