Guidelines for DiffServ to IEEE 802.11 Mapping

draft-ietf-tsvwg-ieee-802-11-00

Tim Szigeti Fred Baker szigeti@cisco.com

fred@cisco.com

July 6, 2016

Problem Statement

- traffic is increasingly sourced-from and destined-to wireless endpoints
- Quality of Service is not aligned between these networks by default
 two independent standards bodies provide QoS guidance on these networks
- the purpose of this draft is to reconcile QoS recommendations
 - 0 so as to optimize IP DSCP and 802.11 UP interconnect QoS

Part 1 of 4

Comments on Section 4.3-Figure 1:

- "EF-Speaking formally, this is a PHB, not a DSCP"
- "EF-ADMIT is lengthy, so here you list a (decimal) DSCP. I understand the purpose of the table and can read it. This column is not formally correct, I guess."
- "You've asked me to decide for non ambiguous mappings in DiffServ Intercon. I ask you for the same here (noting that some decisions are difficult)."

Actions Taken:

- Made all corrections to Figure 4.1
- Selected only one mapping recommendation for High-Throughput Data (AF1
 UP 0), which was the consensus recommendation from IETF96
- Changed Section 4.2.8 (High-Throughput Data Mapping) to match

https://tools.ietf.org/html/draft-ietf-tsvwg-ieee-802-11-00#section-4.3 https://tools.ietf.org/html/draft-ietf-tsvwg-ieee-802-11-00#section-4.2.8 Source: 5/3/16—R. Geib

Comment on Section 10.1-Normative References:

[Re: Reference to I-D.ietf-tsvwg-diffserv-intercon]
 "The RFC will be "Informational", so this is an Informative Reference.
 Please move this reference to the appropriate section."

Actions Taken :

• Moved reference to DiffServ-Intercon to Informative References section (Section 10.2)

• "We should consider CS5 mapping to same things as EF (6) but should map to at least 5 so that it is not less than the video flows."

Action Taken: Changed Signaling Mapping to UP 5

• Changed Signaling (CS5) mapping to UP 5 in Sections 4.2.2 and 4.3

Comment on Section 4.2.4 (Real-time Interactive Mapping from CS4 ^L UP 5 (AC_VI):

• "The practical use of AF4 vs CS4 for video phone calls has always been confusing. Over the past 4 years we have spent a huge amount of time getting the direction to be AF4. If this spec put CS4 above AF4, that would be a cause multiple manufactures to re-examine all of that and likely move to CS4 completely resetting the work we have done on this. The one thing I feel really strongly about is CS4 can't map higher than AF4.

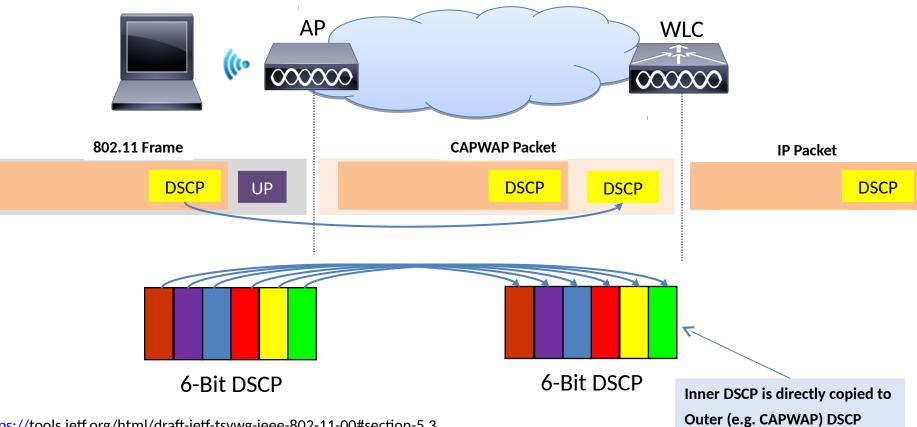
This draft will be downright harmful if it continues to map CS4 above AF4."

(+ similar concerns for Broadcast Video (CS3 👝 UP 5)

Action Taken: Changed Real-Time Interactive and Broadcast Video Mappings to UP 4

• All video classes (including Multimedia-Conferencing, Real-Time Interactive, Multimedia-Streaming and Broadcast Video) are now being mapped to the same UP value (UP 4) and thus admitted to the same Video Access Category (AC_VI), with no distinction in servicing between them

https://tools.ietf.org/html/draft-ietf-tsvwg-ieee-802-11-00#section-10.2 https://tools.ietf.org/html/draft-ietf-tsvwg-ieee-802-11-00#section-4.2.6 Source: 7/7/15 & 5/4/16—C. Jennings


Downstream DSCP-to-UP Mapping Model

Proposal

Basis	RFC 4594-Based Model	DSCP	Remark /		IEEE 802.11 Model
RFC 4594-Sec. 3.1 + 802.11 Table 9.1	Network Control	CS7	-> Drop	UP 7	Voice
RFC 4594-Sec. 3.2 + 802.11 Table 9.1	Internetwork Control	CS6	if not in use	UP /	Access Category
RFC 4594, 5685 + 802.11 Table 9-1	Telephony + VOICE-ADMIT	EF + 44	— >	UP 6	(AC_VO)
RFC 4594-Sec. 4.2 + RFC 5127 Sec. 4.1	Signaling	CS5			
RFC 4594-Sec. 4.3 + 802.11 Table 9-1	Multimedia Conferencing	AF4	┝─┐└─>	UP 5	Video
RFC 4594-Sec. 4.4 + 802.11 Table 9-1	Real-Time Interactive	CS4		UP 4	Access Category
RFC 4594-Sec. 4.5 + 802.11 Table 9-1	Multimedia Streaming	AF3			(AC_VI)
RFC 4594-Sec. 4.6 + 802.11 Table 9-1	Broadcast Video	CS3		UP 3	Best Effort
RFC 4594-Sec. 4.7	Low-Latency Data	AF2		01 5	Access Category
RFC 4594-Sec. 3.3	OAM	CS2	┝───≻	UP 0	(AC_BE)
RFC 4595-Sec. 4.8	High Throughput Data	AF1			Background
RFC 4594-Sec. 4.10, 3662 + 802.11 Table 9-1	Scavenger	CS1		UP 2	Access Category
RFC 4594-Sec. 4.9, 2474 + 802.11 Table 9-1	Best Effort	DF		UP 1	(AC_BK)

https://tools.ietf.org/html/draft-ietf-tsvwg-ieee-802-11-00#section-4.3

Upstream Model: DSCP Trust

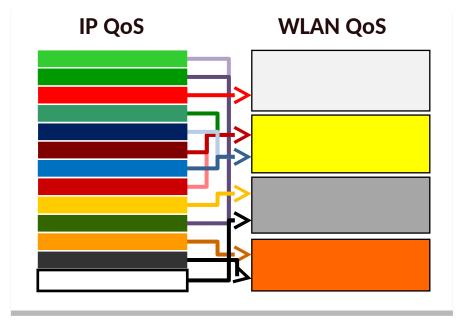
https://tools.ietf.org/html/draft-ietf-tsvwg-ieee-802-11-00#section-5.3

Next Steps

• Request for Working Group Last Call

Appendix A: WLAN QoS Considerations and Implementation Models

Why Consider Wireless OoS?


- QoS is like a chain
 O It's only as strong as the weakest link
- the WLAN is one of the weakest links in enterprise QoS designs for three primary reasons:
 - 1) Typical downshift in speed
 - 2) Shift from full-duplex to half-duplex media
 - 3) Shift from a dedicated media to a shared media
- WLAN QoS policies control *both* jitter and packet loss

Wireless QoS-Specific Limitations

- No EF PHB
- No AF PHB
- Non-deterministic media access
- Only 4 levels of service

WLAN QoS Improvements Quantified

Application	Original Metric	Improved Metric	Percentage Improvement
Voice	15 ms max jitter	5 ms max jitter	300%
	3.92 MOS (Cellular Quality)	4.2 MOS (Toll Quality)	
Video	9 fps	14 fps	55%
	Visual MOS: Good	Visual MOS: Excellent	
Transactional Data	14 ms latency	2 ms latency	700%

Reference: <u>http://www.cisco.com/en/US/prod/collateral/wireless/cisco_avc_application_improvement.pdf</u>

IEEE 802.11 User Priority (UP)

2	2	6	6	6	2	0 or 6	0 or 2	n	4
Frame control	Dur	A1	A2	Aз	Seq control	A4	QoS control	Body	FCS

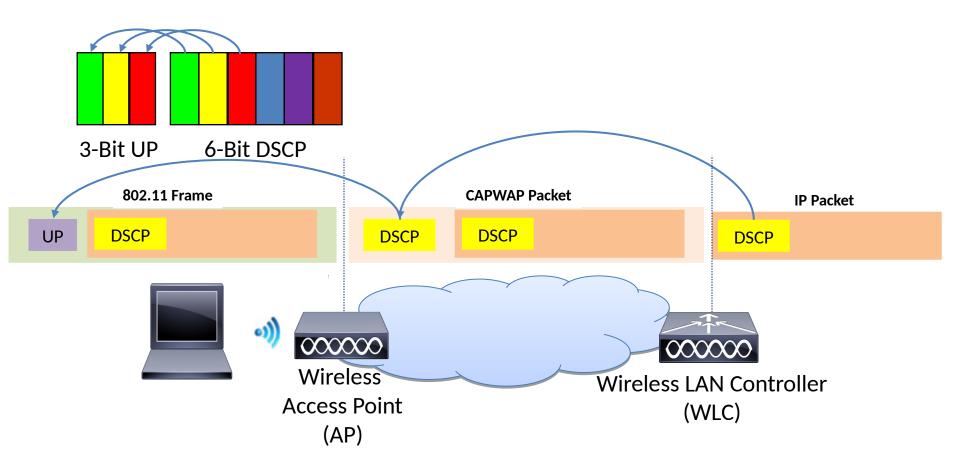
3 Bit Field allows for UP values 0-7

Reference: IEEE 802.11 Figure 8-1

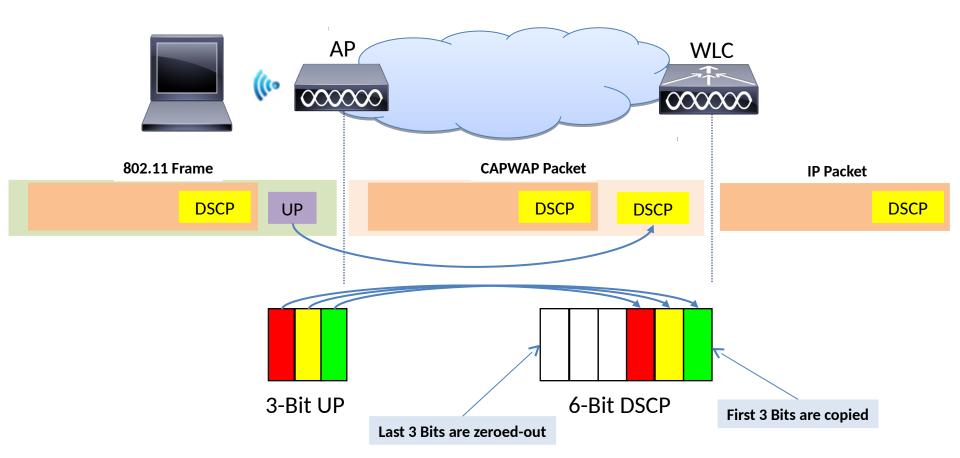
IEEE 802.11 UP Values and Access Categories (AC)

IEEE 802.11 UP Value	IEEE 802.11 Access Category	Wireless Multimedia (WMM) Designation
7	AC_VO	Voice
6		
5	AC_VI	Video
4		
3	AC_BE	Best Effort
0		
2	AC_BK	Background
1		

Reference: IEEE 802.11 Table 9-1


IEEE 802.11 Arbitration Inter-Frame Space (AIFS) & Contention Windows (CW)

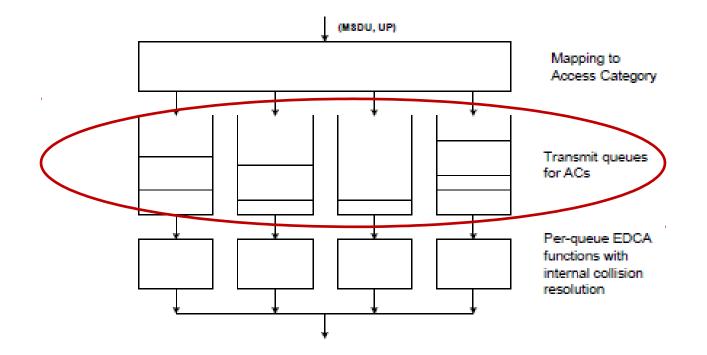
- due to the nature of wireless as a shared media, a Congestion Avoidance algorithm (CSMA/CA) must be utilized ٠
- wireless senders have to wait a fixed amount of time (the AIFS)
- wireless senders also have to wait a *random amount of time* (bounded by the Contention Window)
- AIFS and Contention Window timers vary by Access Category


Access Category	AIFS (Slot Times)	Access Category	CWmin y (Slot Times)		CWmax lot Times)	
Voice	2	Voice	3		7	
Video	2 Video		7		15	
Best Effort	3	Best-Effort	15		1023	
Background	7 Background		15		1023	
						_
			CW	min (0-3)	AIFS 2	Voice
			CWmin (0-7)		AIFS 2	Vide
		CWmin (0-15)			AIFS 3	Best
	CWmin (0-15)			AIFS 7		Back

Reference: IEEE 802.11 Table 8-105

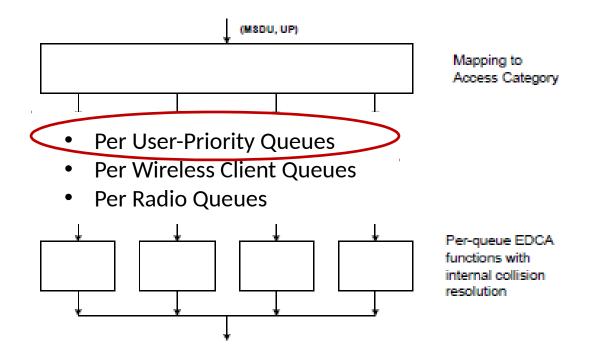
Downstream DSCP-to-UP **<u>Default</u>** Mapping

Upstream UP-to-DSCP **Default** Mapping



Default DSCP-to-UP Mapping Conflict Example

	DSCP	802.11 User Priority	802.11 Access Category
	56-63	7	Voice (AC_VO)
	48-55	6	Voice (AC_VO)
IETF PHB for VoIP: EF	40-47 46		Video (AC_VI)
	32-39	4	
	24-31	3	Best Effort (AC_BE)
	0-7	0	Dest Ellort (AC_DE)
	16-23	2	Background (AC_BK)
	8-15	1	Dackground (AC_DR)


References: RRC 4594, RFC 3246, & IEEE 802.11 Table 9-1

IEEE 802.11 <u>Reference</u> Implementation Model

Reference: IEEE 802.11 Figure 9-19

802.11 Practical Implementation Models

Reference: (Modified) IEEE 802.11 Figure 9-19

Appendix B: Related Mapping Models

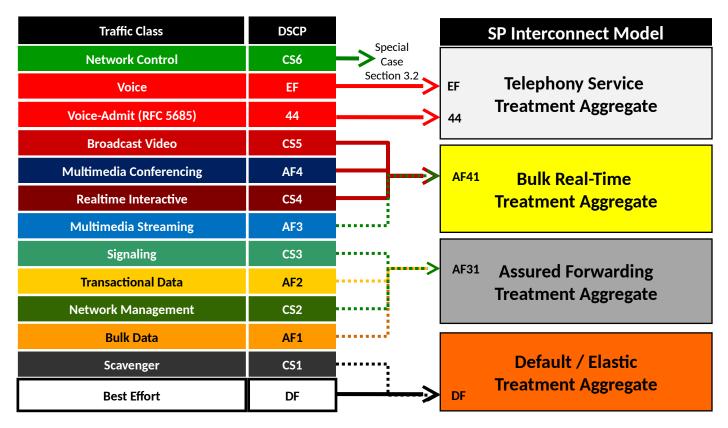
- These is an "example" mapping not a "recommended" mapping per se
- Inconsistent interpretation of RFC 4594
- Inconsistent interpretation of 802.11
- Misleading to use 802.1d UP (vs. 802.11e UP)

	References:	RFC 4594 & IEE	E 802.11 Table V-2
--	--------------------	----------------	--------------------

r				
Application Class	Per-hop behavior (PHB)	IEEE 802.1d User Priority	Access Category	
Network Control	CS6	7	AC_VO	
Telephony	EF	6	AC_VO	
RT Interactive	CS4	6	AC_VO	\triangleright
Multimedia Conference	AF4x	5	AC_VI	1
Signaling	CS5	5	AC_VI	
Broadcast Video	CS3	4	AC_VI	
Multimedia Stream	AF3x	4	AC_VI	
Low Latency Data	AF2x	3	AC_BE	
High Throughput Data	AF1x	2	> A	
OAM	CS2	2	> ACCE	
Standard	DF	0	AC_BE	
Low Priority/Background	CS1	1	AC_BK	

IEEE 802.11 UP to DSCP Range Mapping Example

- These are examples; not recommendations
- Several examples inconsistent with RFC 4594expressed intent


UP Range	DSCP Lo	W	DS	CP High		
UP 0 Range	0	D	F	0		
UP 1 Range	1	CS	51	9		
UP 2 Range	10	AF1	-CS2	16	\rightarrow	>
UP 3 Range	17	A	2	23		
UP 4 Range	24	CS3-	AF3	31		
UP 5 Range	32	CS4-A	F4-CS5	40		>
UP 6 Range	41	E	F	47		
UP 7 Range	48	CS6	-CS7	63		>

Notable PHB Inclusions

References: RFC 4594 & IEEE 802.11 Table V-3

DiffServ Interconnection Classes & Practice

- Proposes a simplified model for interconnecting SPs
- "Draws heavily" on RFC 5127
- Is intended for MPLS, but "is applicable to other technologies"
- This approach "is not intended for use *within* the interconnected (or other) networks"
- DSCPs may be remarked at the interconnection

References: draft-ietf-tsvwg-diffserv-intercon-01 & RFC 5127

Includes Recommendations from RFC 5127 (shown as dotted lines)