#### EDU Tutorial:

#### DNS Privacy

Sara Dickinson <u>Sinodun</u> sara@sinodun.com

EDU Tutorial @ IETF\_97

Seoul (Nov 2017)

#### Overview

#### • Goal:

- Give audience historical background on why DNS Privacy is an important topic
  - Internet Privacy presented by dkg
- Chart progress during last 3-4 years (DPRIVE)
- Present current status and tools

#### Internet Privacy

Daniel Kahn Gillmor <u>ACLU</u>

# DNS Privacy - A brief history

# IETF Privacy activity

| March 2011  | I-D: Privacy Considerations                                                                                                  | s for Internet Protocols (IAB)  |  |
|-------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|
| June 2013   | Snowdon revelations                                                                                                          | What timing!                    |  |
| July 2013   | RFC6973: Privacy Conside                                                                                                     | erations for Internet Protocols |  |
| May 2014    | <b>RFC7258</b> : Pervasive Moni                                                                                              | itoring is an Attack            |  |
| August 2015 | <b><u><b>RFC7624</b></u>: Confidentiality in the Face of Pervasive</b><br>Surveillance: A Threat model and Problem Statement |                                 |  |
|             | Much other ongoing work                                                                                                      |                                 |  |

#### RFC 7258

#### "PM is an attack on the privacy of Internet users and organisations."

"...that needs to be **mitigated** where possible, **via the design of protocols** that make PM significantly more expensive or infeasible."

# DNS Privacy in 2013?

- DNS [RFC1034/5 1987] original design availability, redundancy and speed! (DNS is an enabler)
- DNS standards:
  - UDP (99% of traffic to root)

DNS sent in clear text -> NSA: 'MORECOWBELL'

- TCP only for 'fallback' when UDP MTU exceeded and XFR (support only mandatory from 2010)
- Perception: The DNS is public, right? It is not sensitive/personal information....it doesn't need to be protected/encrypted



# DNS Privacy in 2013?

• **RFC6891**: Extension Mechanisms for DNS (EDNS0)

Intended to enhance DNS protocol capabilities

 But.... mechanism enabled addition of end-user data into DNS queries (non-standard options)

ISP justification: Parental Filtering (per device)

CDN justification: Faster content (geo location)





#### Even behind a NAT, do not have anonymity!

#### Even behind a recursive do not have anonymity!

12

- (AUTH) Who monitors or has access here?
- (UNAUTH) How safe is this data?

Rec

Who monitors or has access here?



- When at home...
- When in a coffee shop...

Auth for .org

Who monitors or has access here?

DNS Privacy Tutorial @ IETF 97

### DNS - complications

- Basic problem is leakage of meta data
  - Allows re-identification of individuals
- Even without user meta data traffic analysis is possible based just on timings and cache snooping
- <u>DNS Filtering</u> is becoming more prevalent

#### DNS Risk Matrix

|                                                       | In-Fl       | ight        | At F            | Rest                |
|-------------------------------------------------------|-------------|-------------|-----------------|---------------------|
| Risk                                                  | Stub => Rec | Rec => Auth | At<br>Recursive | At<br>Authoritative |
| Passive<br>Monitoring                                 |             |             |                 |                     |
| Active<br>Monitoring                                  |             |             |                 |                     |
| Other<br>Disclosure<br>Risks<br>e.g. Data<br>breaches |             |             |                 |                     |

### DNS Service Discovery

- Devices advertise services on local network (DNS, mDNS)
- Other devices then discover the service and use it

Alice's Images. \_imageStore.\_tcp . localAlice's Mobile Phone. \_presence.\_tcp . localAlice's Notebook. \_presence.\_tcp . local

## DNS-SD Privacy

- Advertising leaks information about:
  - User 'name', devices, services (user tracking)
  - Devices services & attributes (port, priorities)
    - Device fingerprinting possible

=> Software or specific device identification

• Discovery leaks info about preferred services

### DNS Privacy options (2013)

• DNSCurve

**Recursive-Auth** 

- Daniel J. Bernstein, initial interest but not adoption
- DNSCrypt

Stub-Recursive

Anti-spoofing, anti DoS

- Many implementations, several open DNSCrypt Resolvers (<u>OpenDNS</u>), [<u>Yandex</u> browser]
- Authentication with some privacy
- Documented but not standard

#### DNS Privacy options (2014)

- Run a local resolver (Unbound)
- **DNSTrigger** (NLNet Labs)
  - Client software to enable DNSSEC
  - Used TLS on port 443 as last ditch attempt to enable DNSSEC (DNS-over-TLS impl)

Goal was DNSSEC, not Privacy!

# DPRIVE WG et al.

#### DPRIVE WG

<u>DPRIVE WG</u> create in 2014

<u>Charter</u>: Primary Focus is Stub to recursive

- Why not tackle whole problem?
  - Don't boil the ocean, stepwise solution
  - Stub to Rec reveals most information
  - Rec to Auth is a particularly hard problem

## DNS Privacy problem

Relationship: **1 to 'a few'** some of whom are know (ISP)

Rec

Relationship:**1 to many** most of whom are not known => Authentication is hard



. 16, Seoul

Root

DNS Privacy Tutorial @ IETF 97

#### <u>RFC 7626</u> -DNS Privacy Considerations

Worth a read - many interesting issues here!

- Problem statement: Expert coverage of risks throughout DNS ecosystem
- Rebuts "alleged public nature of DNS data"
  - The data may be public, but a DNS '**transaction**' is not/should not be.

"A typical example from outside the DNS world is: the web site of Alcoholics Anonymous is public; the fact that you visit it should not be."

#### Choices, choices...

- So... we know the problem but what mechanism to use for encrypting DNS?
  - STARTTLS
  - TLS

• DTLS

Drafts submitted on all these solutions to the working group

• <u>Confidential DNS</u> draft

#### **Encryption Options**

|                    | Pros                                                                                                  | Cons                                                                                                                                       |
|--------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| STARTTLS           | <ul> <li>Port 53</li> <li>Known technique</li> <li>Incrementation deployment</li> </ul>               | <ul> <li>Downgrade attack on negotiation</li> <li>Port 53 - middleboxes blocking?</li> <li>Latency from negotiation</li> </ul>             |
| TLS<br>(new port)  | <ul> <li>New DNS port<br/>(no interference with port 53)</li> <li>Existing implementations</li> </ul> | <ul><li>New port assignment</li><li>Scalability?</li></ul>                                                                                 |
| DTLS<br>(new port) | <ul> <li>UDP based</li> <li>Not as widely used/<br/>deployed</li> </ul>                               | <ul> <li>Truncation of DNS messages<br/>(just like UDP)</li> <li>Fallback to TLS or clear text<br/>Can't be standalone solution</li> </ul> |

#### Encrypted DNS 'TODO' list

- Get a new port
- DNS-over-TCP/TLS: Address issues in standards and implementations
- Tackle authentication of DNS servers (bootstrap problem)
- What about <u>traffic analysis</u> of encrypted traffic msg size & timing still tell a lot!

#### Get a new port!

• One does not simply get a new port...

#### • Oct 2015 - 853 is the magic number

Your request has been processed. We have assigned the following system port number as an early allocations per RFC7120, with the DPRIVE Chairs as the point of contact:

domain-s853tcpDNS query-response protocol run over TLS/DTLSdomain-s853udpDNS query-response protocol run over TLS/DTLS

### DNS + TCP/TLS?

- DNS-over-TCP history:
  - typical DNS clients do 'one-shot' TCP
  - DNS servers have very basic TCP capabilities
  - No attention paid to TCP tuning, robustness
  - Performance tools based on one-shot TCP

## Fix DNS-over-TCP/TLS

| Goal                                           | How?                                                                                                                                                                                   |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Optimise set up & resumption                   | TFO Fast Open<br>TLS session resumption<br>[TLS 1.3]                                                                                                                                   |
| Amortise cost of TCP/TLS setup                 | RFC7766 (bis of RFC5966) - March 2016:<br>Client pipelining (not one-shot!),<br>Server concurrent processing,<br>Out-of-order responses<br>RFC7828: Persistent connections (Keepalive) |
| Servers handle<br>many connections<br>robustly | Learn from HTTP world!                                                                                                                                                                 |

# Performance (RFC7766)

Client - pipeline requests, keep connection open and handle out-of-order response

Server - concurrent processing of requests sending of out of order responses





# Authentication in DNS-over-(D)TLS

#### <u>2 Usage Profiles</u>:

• Strict

(Encrypt & Authenticate) or Nothing

- "Do or do not. There is no try."
- Opportunistic
  - "Success is stumbling from failure to failure with no loss of enthusiasm"

#### Try in order:

- Encrypt & Authenticate then
- Encrypt then
- Clear text

# Authentication in DNS-over-(D)TLS

- Authentication based on config of either:
  - Authentication domain name
  - SPKI pinset
- Shouldn't DNS use DANE...? Well even better:

#### • I-D: TLS DNSSEC Chain Extension

# DNS Auth using DANE



#### TLS DNSSEC Chain Extension



# DPRIVE Solution Documents (stub to recursive)

| Document                                                  | Date              | Topic                              |
|-----------------------------------------------------------|-------------------|------------------------------------|
| <u>RFC7858</u>                                            | May 2016          | DNS-over-TLS                       |
| <u>RFC7830</u>                                            | May 2016          | EDNS0 Padding Option               |
| draft-ietf-dprive-dnsodtls*                               | Completed<br>WGLC | DNS-over-DTLS                      |
| <u>draft-ietf-dprive-dtls-and-</u><br><u>tls-profiles</u> | In WGLC           | Authentication for DNS-over-(D)TLS |

\*Intended status: Experimental

# What about Recursive to Authoritative?

- DPRIVE Re-charter? WG this Friday!
  - I-D: Next step for DPRIVE: resolver-to-auth link
    - Presents 6 authentication options/models
  - Data on DNS-over-(D)TLS
- DNSOP <u>RFC7816</u>: QNAME Minimisation





## Data handling policies

- Do you read the small print of your ISPs contract?
- More work/research needed in this area
  - Monitoring of government policy and practice
  - Transparency from providers on policy and breaches
  - Methods for de-identification of user data (e.g. DITL)
  - 'PassiveDNS' data used for research/security

## DNS-over-HTTP(S)

- DNS-over-HTTP(S) has been around a while...
  - I-D: Review of DNS-over-HTTP
- Privacy (HTTPS authentication)
- Bypass port 53 interference (middlebox, captive portals)
- Higher level API

## DNS-over-HTTP(S)

- Google: <u>DNS-over-HTTPS</u> (non-standard)
- <u>I-D: DNS wire-format over HTTP</u>
  - "Servers and clients SHOULD use TLS for communication."
- <u>I-D: DNS Queries over HTTPS</u>
- Non-WG Mailing list and Bar BOF here (Tuesday)

# Risk Mitigation Matrix

|                                                       | In-Fl                              | ight         | At F                          | Rest                              |
|-------------------------------------------------------|------------------------------------|--------------|-------------------------------|-----------------------------------|
| Risk                                                  | Stub => Rec                        | Rec => Auth  | At<br>Recursive               | At<br>Authoritative               |
| Passive<br>monitoring                                 | Encryption<br>(e.g. TLS,<br>HTTPS) | QNAME        |                               |                                   |
| Active<br>monitoring                                  | Authentication<br>& Encryption     | Minimization |                               |                                   |
| Other<br>Disclosure<br>Risks<br>e.g. Data<br>breaches |                                    |              | Data Best Prac<br>e.g. De-ide | etices (Policies)<br>entification |

#### DNS-SD

- I-D: <u>Privacy Extensions for DNS-SD</u> adopted by WG
- 3 step design
  - 1. Offline pairing mechanism (shared secret)
  - 2. Discovery of the "Private Discovery Service"
  - 3. Actual Service Discovery (enc & auth conn)

Implementation Status

# Recursive implementations

| Features        |                                                            |                                                                                           | Recursive resolver                                                              |                    |            |  |
|-----------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------|------------|--|
|                 |                                                            |                                                                                           | Unbound                                                                         | BIND               | Knot Res   |  |
|                 | TCP fast open                                              |                                                                                           |                                                                                 |                    |            |  |
| TCP/TLS         | Process pipeli                                             | Process pipelined queries                                                                 |                                                                                 |                    |            |  |
| Features        | Provide OOOR                                               |                                                                                           |                                                                                 |                    |            |  |
|                 | EDNS0 Keepalive                                            |                                                                                           |                                                                                 |                    |            |  |
|                 | TLS on port 853                                            |                                                                                           |                                                                                 |                    |            |  |
| TLS<br>Features | Provide server certificate                                 |                                                                                           |                                                                                 |                    |            |  |
|                 | EDNS0 Padding                                              |                                                                                           |                                                                                 |                    |            |  |
| Rec => Auth     | <b>QNAME</b> Minimisation                                  |                                                                                           |                                                                                 |                    |            |  |
|                 | Dark Green:<br>Light Green:<br>Yellow:<br>Purple:<br>Grey: | Latest stable re<br>Patch available<br>Patch/work in p<br>Workaround av<br>Not applicable | elease supports this<br>progress, or requires<br>railable<br>or not yet planned | building a patched | dependency |  |

DNS Privacy Tutorial @ IETF 97



# Alternative server side solutions

- Pure TLS load balancer
  - <u>NGINX, HAProxy</u>
  - BIND article on using stunnel
- <u>dnsdist</u> from PowerDNS would be great...
  - But no support yet

Disadvantages

- server must still have decent TCP capabilities
- DNS specific access control is missing
- pass through of edns0-tcp-keepalive option

# Stub implementations

STUB

|           | Features              |                                                                                                                             | Stub                                                                                              |                                         |                |                     |
|-----------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------|----------------|---------------------|
|           |                       |                                                                                                                             | ldns                                                                                              | digit                                   | getdns         | BIND (dig)          |
|           |                       | TCP fast open                                                                                                               |                                                                                                   |                                         |                |                     |
|           |                       | Connection reuse                                                                                                            |                                                                                                   |                                         |                |                     |
|           | TCP/TLS<br>Features   | Pipelining of queries                                                                                                       |                                                                                                   |                                         |                |                     |
| i outo    |                       | Process OOOR                                                                                                                |                                                                                                   |                                         |                |                     |
|           |                       | EDNS0 Keepalive                                                                                                             |                                                                                                   |                                         |                |                     |
|           |                       | TLS on port 853                                                                                                             |                                                                                                   |                                         |                |                     |
|           | TLS<br>Features       | Authentication of server                                                                                                    |                                                                                                   |                                         |                |                     |
|           |                       | EDNS0 Padding                                                                                                               |                                                                                                   |                                         |                |                     |
|           | nov Tutorial @        | Dark Green: Latest stal<br>Light Green: Patch avai<br>Yellow: Patch/worl<br>Grey: Not applic<br>* getdns uses libunbound in | ble release suppo<br>lable<br>k in progress, or r<br>able or not yet pla<br><i>recursive mode</i> | orts this<br>requires building<br>anned | a patched depe | ndancy              |
| DINS PIIV | acy iutona <u>i @</u> |                                                                                                                             | 40                                                                                                |                                         |                | <u>INOV 2016, s</u> |

#### Implementation Status

- Increasing uptake of better DNS-over-TCP, QNAME minimisation
- Several implementations of DNS-over-TLS
- None yet of DNS-over-DTLS
- BII has <u>DNS-over-HTTP implementation</u>

Key is enabling end users and application developers to easily adopt DNS Privacy

Deployment Status



### **DNS-over-TLS Servers**

| Hosted by            | Software                       |
|----------------------|--------------------------------|
| NLnet Labs           | Unbound                        |
| OARC                 | Unbound                        |
| Surfnet<br>(Sinodun) | Bind + HAProxy<br>Bind + nginx |
| dkg                  | Knot Resolver                  |
| IETF?                |                                |

Find details at: DNS Test Servers





- Modern async DNSSEC enabled API
  - <u>https://getdnsapi.net</u>
- Written in C, various bindings (Python, Java,...)
- DNS-over-TLS, validating DNSSEC stub
- 'Stubby' now available for testing



## Stubby

- A privacy enabling stub resolver (based on getdns\_query tool)
- 1.1.0-alpha3
  - Run as daemon handling requests
  - Configure OS DNS resolution to point at 127.0.0.1

## Stubby In Action

- Reads config from /etc/stubby.conf
  - domain name and SPKI pinset authentication
  - Strict and Opportunistic profiles
- How to build and use Stubby
- Demos available: Sara, Willem Toorop, Allison Mankin

## Stubby in Action

|                                                           | { resolution_type: GETDNS_RESOLUTION_STUB |                     |           |          |                   |                                                                             |
|-----------------------------------------------------------|-------------------------------------------|---------------------|-----------|----------|-------------------|-----------------------------------------------------------------------------|
| <pre>, dns_transport_list: [ GETDNS_TRANSPORT_TLS ]</pre> |                                           |                     |           |          |                   |                                                                             |
|                                                           | . upstream recursive servers:             |                     |           |          |                   |                                                                             |
|                                                           | 1                                         | address data: 145.1 | 100.185   | .16      |                   |                                                                             |
|                                                           |                                           | ls outh name: "do   | sovertle  | s1 sino/ | dun com"          |                                                                             |
|                                                           | · · · · · · · · · · · · · · · · · · ·     | tes_auch_name. and  | 50701 01. | 51.51100 | anti com          |                                                                             |
|                                                           | ,                                         | [[S_pubkey_pinset:  |           |          |                   |                                                                             |
|                                                           |                                           | { algest: "sna250   |           |          |                   |                                                                             |
|                                                           |                                           | , value: 0x659B41   | TEB08DC0  | C70EE9D6 | 624E6219C76EE3195 | 54DA1548B0C8519EAE5228CB24150                                               |
|                                                           |                                           | 1                   |           |          |                   |                                                                             |
|                                                           | }]                                        |                     |           |          |                   |                                                                             |
|                                                           | , tls_d                                   | uthentication: GE7  | TDNS_AU   | THENTIC/ | ATION_REQUIRED    |                                                                             |
|                                                           | , liste                                   | en_addresses: [ 127 | 7.0.0.1   | , 0::1   | 1                 |                                                                             |
|                                                           | . idle                                    | timeout: 10000      |           | -        | -                 |                                                                             |
|                                                           | 1                                         |                     |           |          |                   |                                                                             |
|                                                           |                                           |                     |           |          |                   |                                                                             |
| 667974]                                                   | GETDNS_DAEMON:                            | 145.100.185.15 :    | Conn i    | lnit     |                   |                                                                             |
| 746646]                                                   | GETDNS_DAEMON:                            | 145.100.185.15 :    | Conn c    | :losed:  | Conn stats        | - Resp=36,Timeouts=0,Auth=Success,Keepalive(ms)=10000                       |
| 746687]                                                   | GETDNS_DAEMON:                            | 145.100.185.15 :    |           |          | Upstream stats    | <ul> <li>Resp=36,Timeouts=0,Best_auth=Success,Conns=1</li> </ul>            |
| 746698]                                                   | GETDNS_DAEMON:                            | 145.100.185.15 :    |           |          | Upstream stats    | <ul> <li>Conn_fails=0,Conn_shutdowns=0,Backoffs=0</li> </ul>                |
| 567899]                                                   | GETDNS_DAEMON:                            | 145.100.185.15 :    | Conn i    | lnit     |                   |                                                                             |
| 377446]                                                   | GETDNS_DAEMON:                            | 145.100.185.15 :    | Conn c    | :losed:  | Conn stats        | <ul> <li>Resp=233, Timeouts=0, Auth=Success, Keepalive(ms)=10000</li> </ul> |
| 377545]                                                   | GETDNS_DAEMON:                            | 145.100.185.15 :    |           |          | Upstream stats    | <ul> <li>Resp=269, Timeouts=0, Best_auth=Success, Conns=2</li> </ul>        |
| 377578]                                                   | GETDNS_DAEMON:                            | 145.100.185.15 :    |           |          | Upstream stats    | - Conn_fails=0,Conn_shutdowns=0,Backoffs=0                                  |
| 664881]                                                   | GETDNS_DAEMON:                            | 145.100.185.15 :    | Conn i    | lnit     | _                 |                                                                             |
| 188199]                                                   | GETDNS_DAEMON:                            | 145.100.185.15 :    | Conn c    | :losed:  | Conn stats        | - Resp=13, Timeouts=0, Auth=Success, Keepalive(ms)=10000                    |
| 188265]                                                   | GETDNS_DAEMON:                            | 145.100.185.15 :    |           |          | Upstream stats    | - Resp=282,Timeouts=0,Best_auth=Success,Conns=3                             |
| 188284]                                                   | GETDNS_DAEMON:                            | 145.100.185.15 :    |           |          | Upstream stats    | - Conn_fails=0,Conn_shutdowns=0,Backoffs=0                                  |
| 794347]                                                   | GETDNS_DAEMON:                            | 145.100.185.15 :    | Conn 1    | lnit     | a                 |                                                                             |
| 745280]                                                   | GETDNS_DAEMON:                            | 145.100.185.15 :    | conn c    | :Losed:  | Conn stats        | - Resp=1,Timeouts=0,Autn=Success,Keepalive(ms)=10000                        |
| 745350]                                                   | GETDNS_DAEMON:                            | 145.100.185.15 :    |           |          | Upstream stats    | - Resp=283, Timeouts=0, Best_autn=Success, Conns=4                          |
| 745372]                                                   | GETDNS_DAEMON:                            | 145.100.185.15 :    | a         |          | Upstream stats    | - Conn_Ialls=0,Conn_shutdowns=0,Backoffs=0                                  |
| /0/624]                                                   | GETONS_DAEMON:                            | 145.100.185.15 :    | Conn 1    | lassde   | Conn. state       | Descal minesutard Authomassa Messaline (ma)-10000                           |
| 670120]                                                   | GETDNS_DAEMON:                            | 145.100.185.15 :    | conn c    | :losed:  | Conn stats        | - Resp=1,Timeouts=0,Autn=Success,Keepalive(ms)=10000                        |
| 6702111                                                   | GETDINS_DAEMON:                           | 145.100.185.15 :    |           |          | Upstream stats    | - Kesp=284, Timeouts=0, Best_autn=Success, conns=5                          |
| 2222001                                                   | GETDINS_DAEMON:                           | 145.100.185.15 :    | Conni     | nit      | opstream stats    | - conn_raiis=0,conn_shutdowns=0,Backoris=0                                  |
| 2078021                                                   | GETDINS_DAEMON:                           | 145.100.185.15 :    | Conn a    | logode   | Conn state        | - Rean=2 Timeoutg=0 Auth=Suggers Koonslive(mg)=10000                        |
| 207092]                                                   | GETDINS_DAEMON:                           | 145.100.185.15 :    | conn c    | :Tosed:  | Unstroam stats    | - Resp-2, Timeouts-0, Auth-Success, Reeparive(ms)=10000                     |
| 207974]                                                   | GETDINS_DAEMON:                           | 145.100.185.15 :    |           |          | Upstream stats    | - Conn faile=0 Conn shutdowns=0 Backoffs=0                                  |
| 201991]                                                   | GEIDINS_DALMON :                          | 145.100.105.15 :    |           |          | opscream stats    | - com_rarrs-0,com_snucdowns-0,backorrs-0                                    |

[01:14:33. [01:15:30. [01:15:30. [01:15:30. [01:15:36. [01:16:32. [01:16:32. [01:16:32. [01:16:41. [01:16:59. [01:16:59. [01:16:59. [01:17:07. [01:17:18. [01:17:18. [01:17:18] [01:17:45. [01:17:56. [01:17:56. [01:17:56. [01:18:05. [01:18:16. [01:18:16. [01:18:16.

# Ongoing and Future work

- Hacking this weekend at the IETF 97 Hackathon
  - lots of work on Stubby and test servers
- OS integration of client solutions
- More complete recursive implementations
- Increased deployment
- More DPRIVE work: Recursive to Auth....

#### Summary

- DNS Privacy is a real problem and more relevant than ever
- Active work on the large solution space
- Can test DNS Privacy today using Stubby & current test recursive servers
- More DNS Privacy services on the way...

#### Thank you!

#### Any Questions?

#### https://www.surveymonkey.com/r/97privacy