YANG Schema Mount

draft-ietf-schema-mount-03

Martin Bjorklund
(mbj@tail-f.com)

Ladislav Lhotka
(lIhotka@nic.cz)

17 November 2016

Main Changes since -02

e Any number of mount levels can be specified in place.

e Mounted schemas can be defined as conditional, based on an XPath expres-
sion evaluated on the parent tree.

e The mount-yang-library extension is not used.

Mount Points

Top-level modules (+revisions, submodules, features and deviations) are spe-
cified using YANG library [RFC 7895].

Mount points are defined inside these modules using the mount-point exten-
sion defined in ietf-yang-schema-mount - only under anydata!

import ietf-yang-schema-mount (
prefix yangmnt;
}

// anywhere in the schema tree
anydata foo {

yangmnt:mount-point foo-mount-point; ‘_ arbitrary name
}

Each mount point is identified by its name and module name.

For each mount point, the schema is specified using state data defined in
ietf-yang-schema-mount.

Mounted Schemas

list mount-point {
key "module name";
leaf module {
type yang:yang-identifier;
description
"Name of a module containing the mount point.";
)
leaf name {
type yang:yang-identifier;
description
"Name of the mount point defined using the 'mount-point'
extension.";
}
choice subschema-ref {

leaf inline {]]]
type empty; redirection to state data under the mount point

}

list use-schema {

-
}
}

Schema Reference

list use-schema {
key "name";
leaf name
type leafref {
path "/schema-mounts/schema/name" ;
}

}
leaf when {

type yang:xpathl.O;
}
}

If when is present, the schema entry is used only if the XPath expression eval-
uates to true.

list namespace {

Context for XPath evaluation: key "prefix";
leaf prefix ({
e context node: anydata with the mount point } type yang:yang-identifier;
e accessible tree: only parent tree leaf ns-uri {
e function library: as in YANG 1.1) type inet:uri;
e namespace declarations: explicitly specified }

Schema Specification

list schema {
key "name";
leaf name {
type string;
description
"Arbitrary name of the entry.";

}
uses yanglib:module-list; 4.— module list for this schema

uses mount-point-1list; ‘\m
) ount points for this schema

The inner mount point list refers to mount points in modules specified in the
inner YANG library.

Complete Schema Tree (Part 1)

module: ietf-yang-schema-mount
+--10 schema-mounts
+--70 Namespace* [prefix]
| +--to prefix yang:yang-identifier
| +--1to ns-uri? inet:uri
+--10 mount-point* [module name]
| +--1o module yang:yang-identifier
| +--1to name yang:yang-identifier
| +--to (subschema-ref)?
| +--:(inline)
| | +--7vo inline? empty
| +--:(use-schema)
| +--10 use-schema* [name]
| +--10 name -> /schema-mounts/schema/name
| +--1to when? yang:xpathl1.0

Complete Schema Tree (Part 2)

+--10 Schema* [name]

+--1TO0 name string
+--10 module* [name rTevision]
| +--1to name yang:yang-identifier
| +--ro revision union
| +--1to schema? inet:uri
| +--1to namespace inet:uril
| +--ro feature* yang:yang-identifier
| +--ro deviation* [name revision]
| | +--To name yang:yang-identifier
| | +--1o rTevision union
| +--to conformance-type enumeration
| +--ro submodule* [name revision]
| +--1T0 name yang:yang-identifier
| +--10 Tevision union
| +--10 schema? inet:uri
+--10 mount-point* [module name]
+--10 module yang:yang-identifier
+--T0 name yang:yang-identifier

+--10 (subschema-ref)?
+--:(inline)
| +--ro inline? empty
+--:(use-schema)
+--70 use-schema* [name]
+--T0 name -> /schema-mounts/schema/name
+--10 when? yang:xpathl.0

Use Case #1

Arbitrary mounted schemas, not known in advance - each device has a specific

schema.

module example-network-manager

list device {
key name;
leaf name (
type string;
}
anydata device-root {
yangmnt:mount-point managed-device;
}

}
}

"ietf-yang-schema-mount:schema-mounts": {
"mount-point": |

{
"module”: "example-network-manager",
"name": "managed-device",
"inline": [null]

}

]
}

An instance of YANG library (and schema-mounts) must be present under
device-root in every entry of device list.

Use Case #2

Alternative schemas, all known in advance - many devices sharing a few
schemas.

module example-network-manager

list device {
key name;
leaf name (
type string;
}
leaf type {
type identityref {
base edt:device-type;
}
}
anydata device-root {
yangmnt:mount-point managed-device;
}

}
}

10

Use Case #2, continued

"ietf-yang-schema-mount:schema-mounts": {
"namespace": |
{ "prefix": "edt",
"ns-uri": "http://example.org/device-types" }

1,

"mount-point": |

{ "module": "example-network-manager",
"name": "managed-device",
"use-schema":

"name": "switch",
"when": "derived-from-or-self(../type, 'edt:switch')" },

"name": "router”’,
"when": "derived-from-or-self(../type, 'edt:router')" },

XPath expressions in when are evaluated with device-root as the context
node.

11

Open Issues

1. Is the mount-point extension really needed?

2. Is it possible to handle “hybrid” mounts?

12

Extension mount-poilnt

Pros:

e Data modeller’s intention is expressed in @ machine readable form.

Cons:

e If a mount point is defined inside a grouping, then the grouping can be used
no more than once in the same module.

Alternative: Use schema node identifiers for locating mount points (still lim-
ited to anydata nodes).

13

“Hybrid” Mounts

Currently all mounted schemas are self-contained and cannot refer to ancestor
or descendant schemas.

A. Routing instances: mounted schema (ietf-routing, ...), but all instances
share a global list of interfaces (ietf-interfaces, ...).

B. Virtual routers: Physical device has a global list of interfaces, but each
virtual router also has its own list of interfaces, along with routing config-
uration.

Even if we invent notation for referring to nodes in ancestor schemas, a module
such as ietf-routing cannot support both variants at the same time.

Possible solution: keep an extra list of interfaces allocated to each routing
instance, and specify this allocation in the global interface list.

(Déja vu: draft-ietf-netmod-routing-cfg-19).

14

