

Electronics and Telecommunications Research Institute

Optimal Service Placement using Pseudo Service Chaining Mechanism [Playnet-MANO]

IETF 97 meeting @ Seoul

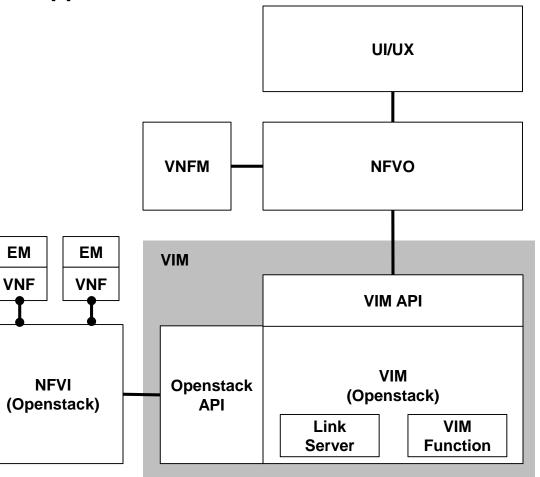
2016. 11. 15.

Taeheum Na : {taeheum@etri.re.kr} Network SW Platform Research Section

ETRI

Background

- Playnet-MANO
- PSCM : Pseudo Service Chaining Mechanism
 - Phase 1: Calculation of virtual link cost
 - Phase 2: Selection of available computing nodes
 - Phase 3: Greedy placement
- Conclusion



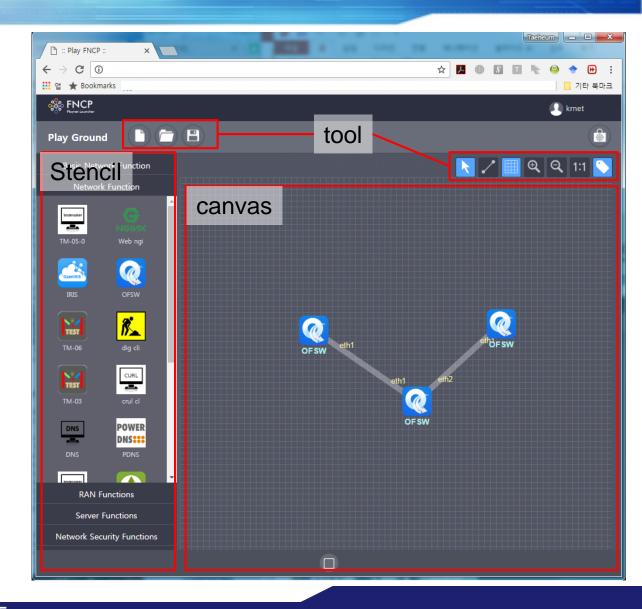
Playnet-MANO

- 2 -


Playnet-MANO

- Playnet-MANO = Playground for virtualized network application
 - Open Source MANO (OSM) based NFV Environment
 - Extended VIM functionality: OpenStack (liberty)
 - > Container and KVM based virtualization
 - > Using Nova-docker plugin
 - > Consideration for point-to-point link (E-line type)
 - Saving & loading Network Service (NS)
 - > Save and load NS using VNFFG format

Playnet Architecture


- Features of Playnet
 - VNF Management
 - > GUI based Registering / deleting VNF at Playnet Store
 - > Instantiation/termination/configuration

Play FNCP : ×						
← → C ①			• []	0 4		▶ : ★ 북마크
					krnet	국미그
Play Store			검색	할 내용을 입	입력하세요.	<u>ا</u> م
PlayStore Register					X	의앱
이름	vnf의 이름을 일력하는 곳 입니다.					
버전 정보	vnf의 버전을 일력하는 곳 입니다.					
카테고리	vnf의 카테고리를 일력하는 곳 입니다.					
타입	vnf의 타입을 일력하는 곳 입니다.					
가격	vnf의 가격을 입력하는 곳 입니다. (숫자만 입력해 주십시오.)					
아이콘 파일	파일 선택 선택된 파일 없음					
docker image 파일	파일 선택 선택된 파일 없음					F.
description 파일	파일 선택 선택된 파일 없음					
xml 파일	파일 선택 선택된 파일 없음					
						F
				<u> </u>	록 취소	
0	·····································				삭제	
0 • 0 0 0 0						
	Ô					

Playnet Architecture

- Features of Playnet
 - Network Service Management
 - Network Services are managed as projects
 - \succ Project save \rightarrow configuration for VNFs are also saved
 - > Loading the project \rightarrow all VNF instances are activated
 - Configurations for VNFs are also synchronized
 - ➢ Project termination → all VNF instances are terminated
 - Creating/deleting link among VNFs
 - Point-to-Point, Multipoint-to-Multipoint
 - Flavor management
 - → When NS is loaded, need to consider optimal placement for the link performance

Related work

IETF Standard

- draft-irtf-nfvrg-resource-management-service-chain-03
- draft-lee-sfc-dynamic-instantiation-01
- Both draft document mention traffic localization
 - → Our work can be one of the use case
- ETSI Standard
 - VNFFG Descriptor (VNFFGD)
 - Virtual Link Descriptor (VLD)
 - > Throughput/Bandwidth requirement, QoS
 - Virtual Link Record (VLR)
 - > Allocated_capacity
 - → need more specific parameter for the link

number of transaction (VLD), weight of transaction (VLD), amount of transmitted data (VLR)

Goal

- By localizing SFs (=Minimize the number of entity in SFPs) based on link description metric
- Saving core network bandwidth
- By avoiding capsulation, save the computation resource
- Getting more better performance of virtual link
- Assumption
 - Doesn't consider scaling, failover and policy
 - Metric of Link parameter is decided by Operator (SFC user) at first
 - Based on monitoring, it can be updated

Overview of mechanism ** Virtual network SN_2 t_2 SN_4 SN_3 t_3 R_2 SN₁ R_4 R_3 Service Chain Network R_1 Phase 1: Calculation of Virtual Link Costs Virtual network Based on VLD parameters calculate link cost \geq SN₂ SN₄ R_2 Selecting pseudo virtual node (PVN) SN₁ \geq Pseudo Service Chain Network pseudo R_1 Phase 3: Placement PVN • SAB₁ SAB₂ AN_2 Available AN_1 **Computing Nodes** AN_3 Phase 2: selection of available computing • nodes $AB_{3}CN_{4}$ AB_4 AB_2 Physical CN_2 AB_1 **Computing Nodes** CN_5 • It is recursively conducted CN_3 CN_1

- Phase 1: Calculation of Virtual Link Costs
 - Transaction among service nodes
 - Transaction weight at virtual link
 - Volume of traffic at virtual link

Table 1. Parameter definitions for calculation of virtual link costs.

Notation	Definition	
t _i	Amount of transactions at a virtual link <i>i</i>	
Wi	Transaction weight for a virtual link <i>i</i>	
b _i	Volume of traffic at a virtual link <i>i</i>	
c _i	Cost of a virtual link <i>i</i>	
L _c	List of virtual links in the order of cost	

$$c_i = w_i \times NROM(t_i) \times b_i$$

where, 0 < I < number of virtual link

- Phase 2: Selection of available computing nodes
 - Based on resource requirement of instance
 - Available compute node
 - > 1st available compute node
 - ✓ Available resource > resource requirement of PVN
 - $L_r = List of Available computing Nodes \{ \mathbf{R}_i \geq SUM[V_{r_i}, V_{r_{i\pm 1}}] \}$

Where, 0 < i < number of service node

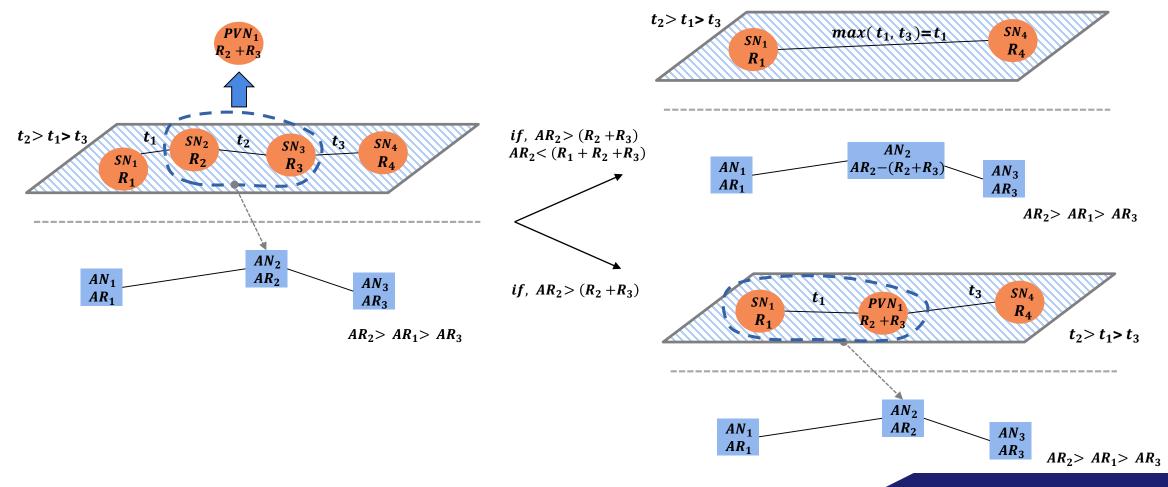
- > 2nd available compute node
 - ✓ Available resource > minimum resource requirement of SN

 $L_r = List of Available computing Nodes \{ \mathbf{R}_i \geq MIN[V_{r_1}, V_{r_i}] \}$

Where, 0 < i < number of service node

Sort in descending order

- Phase 3: Greedy placement
 - Multiple-Knapsack Problem


$$x_{jk} \begin{cases} 1, if \ vm_j \ is \ assigned \ in \ pvm_k \\ 0, otherwise \end{cases}$$
(5)

$$\sum_{j=1}^{n} V r_j x_{jk} < R_i \tag{6}$$

$$pw_k = \sum_{j=1}^n w_j x_{jk} \tag{7}$$

$$y_{ik} \begin{cases} 1, if \ pvm_k \ is \ assigned \ in \ AN_i \\ 0, otherwise \end{cases}$$
(8)
$$maximizes \ z = \sum_{i=1}^m \sum_{j=1}^n pw_k y_{ik}$$
(9)

- Phase 3: Greedy placement
 - Maximize the sum of cost in the allocated PVM

✤ Result

- improvement of 14% in RTT
- improvement of 37% in UDP receive rate
- Analysis
 - Better performance for Loss-rate of UDP
 - Decrease round trip time
 - Less CPU usage of host node(Interrupt)

taeheum@etri.re.kr

- 15 -