Integrating Autonomic Slice Networking in NFV

draft-galis-anima-autonomic-slice-networking-01

V2.0 – 12th November 2016

Prof. Alex Galis
a.gais@ucl.ac.uk; http://www.ee.ucl.ac.uk/~agalis/
University College London,
Department of Electronic & Electrical Engineering
Torrington Place
London WC1E 7JE
United Kingdom

Kiran Makhijani
kiran.makhijani@huawei.com
Huawei Technologies
2890, Central Expressway
Santa Clara CA 95032,
USA

Delei Yu
yudelei@huawei.com
Huawei Technologies
Q22, Huawei Campus
No.156 Beiqing Road
Hai-Dian District, Beijing 100095
P.R. China
Content List

1. Background and Context
2. Autonomic Slice Networking Definitions and Impact
3. Initial Reference Model – Autonomic Slice Networking
4. Revisited SDN Layered Architecture
5. Further Work
6. Summary & Concluding Remarks
Definitions of Network Slicing (I)

Active / Programmable Networks research: node operating systems & resource control frameworks (1995 -2005) (*)

Federated Testbed research: Planet Lab USA (2002), PlanetLab EU (2005), OneLab EU (2007), PlanetLab Japan (2005), OpenLab EU (2012)

GENI Slice (2008): “GENI is a shared network testbed i.e. multiple experimenters may be running multiple experiments at the same time. A GENI slice is:

• The unit of isolation for experiments.
• A container for resources used in an experiment. GENI experimenters add GENI resources (compute resources, network links, etc.) to slices and run experiments that use these resources.
• A unit of access control. The experimenter that creates a slice can determine which project members have access to the slice i.e. are members of the slice.

Definitions of Network Slicing (II)

3 Slices Capabilities
– “Resource allocation to virtual infrastructures or slices of virtual infrastructure.”
– “Dynamic creation and management of virtual infrastructures/slices of virtual infrastructure across diverse resources.”
– “Dynamic mapping and deployment of a service on a virtual infrastructure/slices of virtual infrastructure.”

17 Orchestration capabilities
19 Self-functionality mechanisms
14 Self-functionality infrastructure capabilities

ITU-T Slicing (2011) as defined in [ITU-T Y.3011], [ITUTY.3012] is the basic concept of the Network Softwarization. Slicing allows logically isolated network partitions (LINP) with a slice being considered as a unit of programmable resources such as network, computation and storage.
NGMN Slice capabilities (2016) - consist of 3 layers: 1) Service Instance Layer, 2) Network Slice Instance Layer, and 3) Resource layer.

- The Service Instance Layer represents the services (end-user service or business services) which are to be supported. Each service is represented by a Service Instance. Typically services can be provided by the network operator or by 3rd parties.

- A Network Slice Instance provides the network characteristics which are required by a Service Instance. A Network Slice Instance may also be shared across multiple Service Instances provided by the network operator.

- The Network Slice Instance may be composed by none, one or more Sub-network Instances, which may be shared by another Network Slice Instance.

Network Service Slices (2016) A network service slice is grouping of physical or virtual (network, compute, storage) resources which can act as a sub network and/or cloud and it can accommodate service components and network (virtual) functions. For slice creation, management planes create virtual or physical network functions and connects them as appropriate and instantiate all the network functions assigned to the slice. On the other hand, for slice creation, the slice control takes over the control of all the virtualised network functions and network programmability functions assigned to the slice, and (re-)configure them as appropriate to provide the end-to-end service.
Example of 5G C-RAN network slicing

Network Slicing Key Characteristics (1)

- Concurrent deployment of multiple logical, self-contained and independent, shared or partitioned networks on a common infrastructure platform.
- Supports dynamic multi-service support, multi-tenancy and the integration means for vertical market players.
- Separation of functions simplifies
 - the provisioning of services,
 - manageability of networks and
 - integration and operational challenges especially for supporting communication services.
Network Slicing Key Characteristics (2)

• Network operators/ ISP can exploit network slicing for
 – reducing significantly operations expenditures,
 – allowing also programmability and innovation, necessary to enrich the offered services.
 – for their offered tailored services
 – means for network programmability to OTT providers and other market players without changing the physical infrastructure.

• Considerably transform the networking perspective
 – Enhance Internet architecture by abstracting, isolating, orchestrating and separating logical network behaviors from the underlying physical network resources.
Network Slice Usage Scenarios

- Mission-critical Ultra low latency communication
- Massive-connectivity machine communication (e.g. Smart metering, Smart grid and sensor networks)
- Extreme QoS
- Independent QoS isolation design
- Independent operations and management
- Independent autonomic management functionality
- Independent cost and/or energy optimisation
- Sharing Infrastructure: Enablers for sharing infrastructure safely and efficiently (Multi-tenant)
(1) The Service Instance component
- represents the end-user service or business services.
- an instance of an end-user service or a business service that is realized within or by a Network Slice.
- would be provided by the network operator or by 3rd parties.

(2) A Network Slice Instance component
- represented by a set of network functions, and resources
- forms a complete instantiated logical network to meet certain network characteristics required by the Service Instance(s).
- provides network characteristics which are required by a Service Instance.
- may also be shared across multiple Service Instances

(3) Resources component — it includes: Physical, Logical & Virtual resources
- Physical & Logical resources - An independently manageable partition of a physical resource, which inherits the same characteristics as the physical resource and whose capability is bound to the capability of the physical resource. It is dedicated to a Network Function or shared between a set of Network Functions;
- Virtual resources - An abstraction of a physical or logical resource, which may have different characteristics from that resource, and whose capability may not be bound to the capability of that resource.

(4) Slice Capability exposure component
- allow 3rd parties to access via APIs information regarding services provided by the slice (e.g. connectivity information, QoS, mobility, autonomicity, etc.)
- allow to dynamically customize the network characteristics for different diverse use cases within the limits set of functions by the operator.
- it includes a description of the structure (and contained components) and configuration of the slice instance.
"Autonomic Slice Networking Infrastructure" (ASNI) - It consists of a number of autonomic nodes resources, which interact directly with each other. Those autonomic nodes resources provide a common set of capabilities across a network slices. The ASNI provides functions like naming, addressing, negotiation, synchronization, discovery and messaging.

Autonomic network functions typically span several slices in the network. The atomic entities of an autonomic function are called the "Autonomic Service Agents" (ASA), which are instantiated on slices.
Revisited SDN Layer Architecture (rfc7426) – Reference Model

Application Plane

Services

Application

Network Services Abstraction Layer (NSAL)

Autonomic Orchestration

Control Plane

Services

App

Control Abstraction Layer (CAL)

Management Plane

Services

App

Management Abstraction Layer (MAL)

Network Slices

Slice Capability Exposure 1

Slice Capability Exposure 2

Slice Capability Exposure M

Device and resource Abstraction Layer (DAL)

Forwarding Plane

App

Network Device

Operational Plane
Revisited ETSI NFV Framework – Reference Model

Virtualized Network Functions (VNFs)

- NFV
- NFV
- NFV
- NFV

NFV Infrastructure (NFVI)

- Virtual Compute
- Virtual Storage
- Virtual Network

Virtualization Layer

Slice Capability Exposure 1
Slice Capability Exposure 2
Slice Capability Exposure M

Network Slices

Hardware Resources

Compute
Storage
Network

NFV Management And Orchestration

Autonomic Slice Orchestration
Advanced Network Slicing Work Items & Issues

2. **Slice selection and Isolation**: Identify and select the slice in device, access and core part

3. **QoS Isolation design** guarantee the end-to-end QoS of a slice

4. Describe **shared non-sliced network parts**

5. **Slice Life cycle management** including protection (i.e. providing related slice protection mechanisms so that events within one slice, such as congestion, do not have a negative impact on another slice)

6. **Efficiency in slicing**: realize diverse requirements without re-engineering the infrastructure
7. **Slice Templates**: Design the slices to different scenarios; an appropriate slice template definition

8. **Autonomic slice management** (self-configuration, self-composition, self-monitoring, self-optimisation, self-elasticity are carried as part of the slice protocols)

9. **Slice Stitching**: Enablers for efficient stitch/composition/decomposition of slices vertically (service + management + control planes) and/or horizontally (between different domains of edge, access, core segments)

10. **Service Mapping**: Dynamic Mapping of Services to slices

11. **Sharing Infrastructure**: Enablers for sharing infrastructure safely and efficiently (Multi-tenant)

12. **Four dimensional efficient isolation** in Data/ Control/ Management/ Service planes

13. **Global optimisation** - Network resources automatic acquisition, global resource view formed; Network Slice deployed based on global resource; Mapping algorithms

14. **E2E orchestration** of slices (Autonomic or through SDN principles)

15. **Infrastructure openness** to use fully controlled network slices (Service openness enable program services with north API)
Summary & Concluding Remarks

• Autonomic Slice Networking would considerably *transform the networking perspective* and *enhance Internet architecture* by
 – abstracting,
 – isolating,
 – orchestrating,
 – separating logical network behaviours from the underlying physical network resources.
 – dynamic management of network resources by managing resource-relevant slice configuration; simplification and reduction of operations expenditures
 – Support for rapid service provisioning

• Autonomic Slice Networking is introduced to IETF97 (ANIMA, SDNRG, NMRG, NFV...)
• Initial draft <draft-galis-anima-autonomic-slice-networking-01>

• **Invitation to participate in the Autonomic Slice Networking related drafts**
 – reference models,
 – control plane,
 – management plane,
 – signaling protocol,
 – control loops,
 – terms and concepts