
In-situ OAM – Update

Frank Brockners, Shwetha Bhandari,
Sashank Dara, Carlos Pignataro (Cisco)
Hannes Gedler (rtbrick)
Steve Youell (JMPC)
John Leddy (Comcast)
David Mozes (Mellanox)
Tal Mizrahi (Marvell)
Petr Lapukhov (Facebook)
Remy Chang (Barefoot)

IETF 97 – OPSAWG; Nov 14th, 2016

draft-brockners-proof-of-transit-02.txt

draft-brockners-inband-oam-requirements-02.txt

draft-brockners-inband-oam-data-02.txt

draft-brockners-inband-oam-transport-02.txt

https://tools.ietf.org/html/draft-brockners-proof-of-transit-02.txt
https://tools.ietf.org/html/draft-brockners-inband-oam-requirements-02.txt
https://tools.ietf.org/html/draft-brockners-inband-oam-data-02.txt
https://tools.ietf.org/html/draft-brockners-inband-oam-transport-02.txt

In-situ OAM – A brief recap

• Gather telemetry and OAM information along the path within the data packet,
(hence “in-situ OAM”) as part of an existing/additional header

• No extra probe-traffic (as with ping, trace, ipsla)

• Transport options

• IPv6: Native v6 HbyH extension header or double-encap

• VXLAN-GPE: Embedded telemetry protocol header

• SRv6: Meta-data in TLV format in SRH

• NSH: Type-2 Meta-Data
... additional encapsulations being considered/WIP (incl. IPv4, MPLS)

• Deployment

• Domain-ingress, domain-egress, and select devices within
a domaininsert/remove/update the extension header

• Information export via IPFIX/Flexible-Netflow/publish into Kafka

• Fast-path implementation

Hdr OAM Payload

iOAM domain

• General

• Name change: “In situ OAM” (thanks to Erik
Nordmark for proposing a the new name)

• Proper classification per RFC 7799

• Data-format alignment and content merged with
I-D.lapukhov-dataplane-probe

• Evolved requirements, fixes to in -00 versions of
the drafts (thanks to Jen Linkova, Hemant
Singh, Ignas Bagdonas)

• Proof of transit

• Nested hashing as additional approach to POT
(complementing Shamir’s Secret Sharing)

• Evolved discussion of threat models and
protection

• RND as a hash across the payload to couple
POT metadata and packet payload

• Data records

• Short/long format of several data records (incl. node-
id, app meta-data, etc.)

• Timestamps

• Wall-clock (in ns and sec)

• Transit-delay

• Queue length: Capture egress queue depth when
packet is being processed

• Two options for data record allocation for trace data:
Pre-allocated and incremental

• Added constraint: All data 4 byte boundary aligned

Updates included in -02 version of the drafts

See also: https://github.com/inband-oam/ietf/issues?q=is%3Aissue+is%3Aclosed

https://github.com/inband-oam/ietf/issues?q=is:issue+is:closed

• Per node scope

• Hop-by-Hop information processing

• Device_Hop_L

• Node_ID (long/short)

• Ingress Interface ID (long/short)

• Egress Interface ID (long/short)

• Time-Stamp

• Wall clock (ns/sec)

• Transit delay

• Queue length

• Opaque data

• Application Meta Data (long/short)

In-situ OAM: Data Records

• Set of nodes scope

• Hop-by-Hop information processing

• Service Chain Validation
(Random, Cumulative)

• Edge to Edge scope

• Edge-to-Edge information processing

• Sequence Number

Two transport options*:

• Pre-allocated array (SW friendly)

• Incrementally grown array (HW friendly)
*See sections 3.1.2 and 3.1.3 in draft-brockners-inband-oam-data-02

POT Solution Approach 2:
Nested Crypto: “Compose an Onion”

• Approach

• A service is described by a set of secrets, where each secret
is associated with a service function. Service functions
encrypt portions of the meta-data as part of their packet
processing.

• Only the verifying node has access to all secrets. The
verifying nodes re-encrypts the meta-data to validate whether
the packet correctly traversed the service chain.

• Notes

• Nested encryption allows to check the order in which the
nodes where traversed

• To be used only when hardware assisted encryption is
available. i.e. AES-NI instructions or equivalent. Otherwise
this could be very costly operation to verify at line speed.

“S1”
“S2”

“S3”

Service-Secrets are nested
like layers of an onion

1. The controller provisions all the nodes with their respective secret keys.

2. The controller provisions the verifier with all the secret keys of the nodes.

3. For each packet, the ingress node generates a random number RND and encrypts it with its secret
key to generate CML value

4. Each subsequent node on the path encrypts CML with their respective secret key and passes it along

5. The verifier is also provisioned with the expected sequence of nodes in order to verify the order

6. The verifier receives the CML, RND values, re-encrypts the RND with keys in the same order as
expected sequence to verify.

POT Solution Approach 2:
“Compose the Onion”

S1 S2 S3 S4 S5

In-situ OAM demos at Bits-n-bites
M-anycast

Smart service selection – combing

SRv6 and in-situ OAM

In-situ OAM based

active network probing

VXLAN-GPE
Overlay-Underlay Tracing and

SLA Check

A

C

D

B

A A

B

A

B

C

VXLAN-GPE

4

1

20

3

S1

S2

S3

C1

Measure transit delays,

server loads, choose

optimal service for client

and steer connection using SRv6

0

1

2

3

4

5

6

Server

UDP probe configured among all

edge nodes (0,1,5,6). Server collects

summarized probe info from all edge

nodes

Next Steps

• The authors appreciate thoughts, feedback, and text on the content of the documents from
the OPSAWG WG

• The authors believe OPSAWG is the right place to taking on the in-situ OAM / POT work.

• In-situ OAM is an operational capability

• In-situ OAM is applicable throughout various encapsulations and technologies, incl. IPv6.

Consequently, is OPSAWG interested in taking on the in-situ OAM / POT work?

