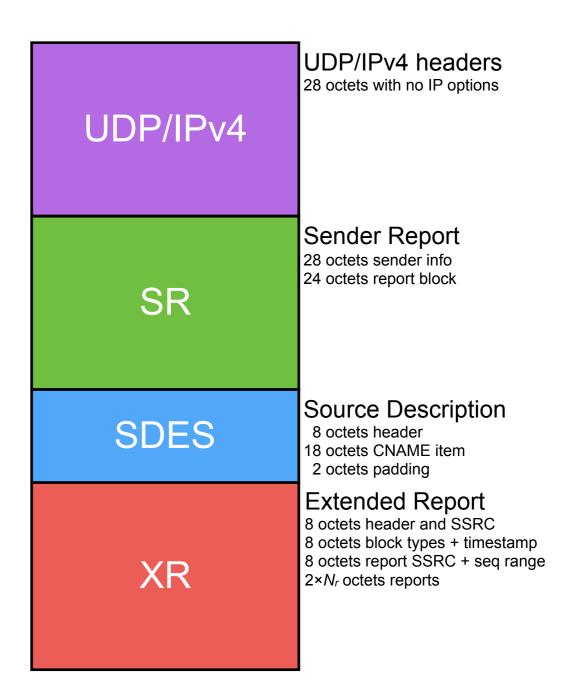


RTCP Feedback for Congestion Control in Interactive Multimedia Conferences

draft-ietf-rmcat-rtp-cc-feedback-03

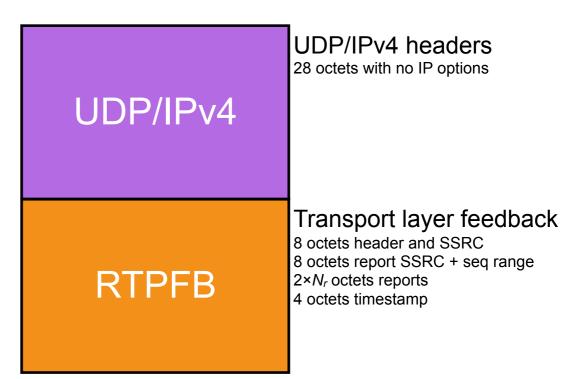
Colin Perkins

RTCP feedback timing – can we report often enough?

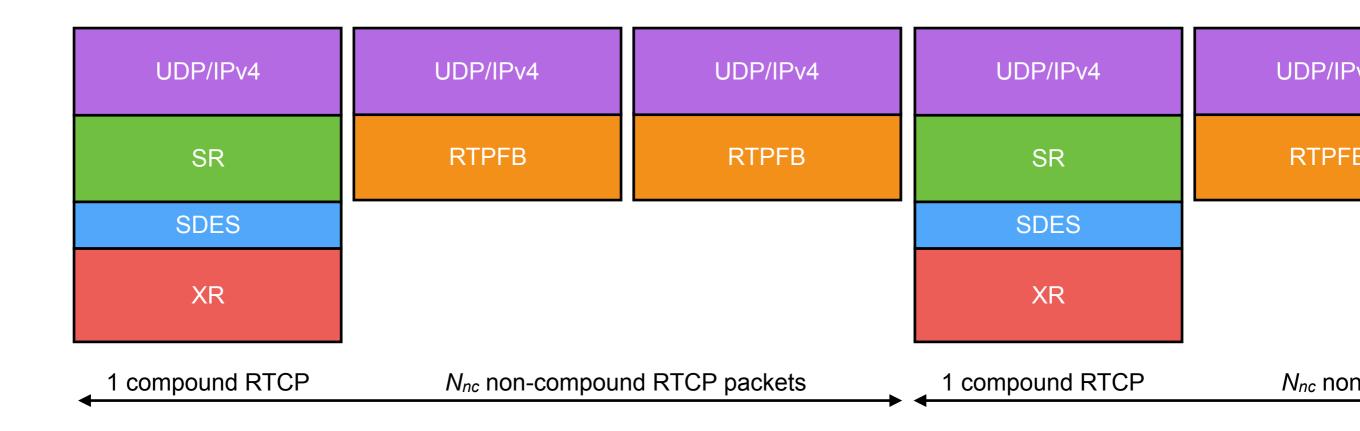

- Congestion control requires reasonably rapid feedback
 - On packet loss or ECN-CE marking
 - On packet timing, for delay-based algorithms
- Using the feedback packets in draft-dt-rmcat-feedback-message-01 can RTCP send timely feedback with acceptable overhead?
- Assume a modern RTCP implementation:
 - RTP/AVPF or RTP/SAVPF profile
 - Non-compound RTCP packets
 - RTCP XR
 - RFC 7022 format for SDES CNAME items
 - Report aggregation fixes from draft-ietf-avtcore-rtp-multi-stream
 - Reporting groups (draft-ietf-avtcore-rtp-multi-stream-optimisation)

Scenario 1: VoIP

- Two-party point-to-point VoIP call
- Speech frames sent every T_f seconds; both participants sending
- Want to send congestion feedback every N_r frames
- Desire RTCP reporting interval = $T_f \times N_r$ seconds
- RTCP packets can be regular compound packets or non-compound packets sent using RTP/AVPF early feedback
 - Send *N_{nc}* non-compound packets between every compound packet


Scenario 1: VoIP – compound RTCP packets

- Compound RTCP packets contain:
 - Sender Report (SR)
 - Source Description (SDES) with CNAME item
 - Extended Report (XR) with congestion control feedback (draft-dt-rmcat-feedback-message-01)
- Packet size, $S_c = 132 + 2 \times N_r$ octets



Scenario 1: VoIP – non-compound RTCP packets

- Non-compound RTCP packets contain:
 - RTP/AVPF transport layer feedback packet (draft-dt-rmcat-feedback-message-01)
- Packet size, $S_{nc} = 48 + 2 \times N_r$ octets

Scenario 1: VoIP – average RTCP size

• Average RTCP packet size, $S_{rtcp} = (S_c + N_{nc} \times S_{nc}) / (1 + N_{nc})$ where $N_{nc} = 0$ if non-compound packets are not sent

Scenario 1: VoIP – RTCP bandwidth

- From RFC 3550: RTCP reporting interval, *T_{rtcp}* = *n* × *S_{rtcp}/B_{rtcp}* where:
 - *n* is the number of participants (*n* = 2 in this scenario)
 - $S_{rtcp} = (S_c + N_{nc} \times S_{nc}) / (1 + N_{nc})$ is the average RTCP packet size in octets
 - B_{rtcp} is the bandwidth allocated to RTCP in octets per second
- To report every N_r frames, we want $T_{rtcp} = N_r \times T_f$ $\Rightarrow N_r \times T_f = n \times S_{rtcp}/B_{rtcp}$

 $\Rightarrow B_{rtcp} = (n \times (S_c + N_{nc} \times S_{nc})) / (N_r \times T_f \times (1 + N_{nc}))$

Scenario 1: VoIP – RTCP bandwidth requirements (1)

T _f (seconds)	N _r (frames)	<i>B_{rtcp}</i> (kbps)
20ms	2	53.1
20ms	4	27.3
20ms	8	14.5
20ms	16	8.0
60ms	2	17.7
60ms	4	9.1
60ms	8	4.8
60ms	16	2.7

Sending only compound RTCP packets

- Chart gives the required RTCP bandwidth, *B_{rtcp}*, to send a report after every *N_r* frames with frames being sent every *T_f* seconds
 - Total RTCP bandwidth for the session: each participant gets half of this
 - Compound packets only: $N_{nc} = 0$
- Sending an RTCP report every 2nd frame with 20ms frames → 53kbps RTCP bandwidth
- Sending an RTCP report every 16th frame with 60ms frames → 2.7kbps RTCP bandwidth
 - This is 1 RTCP packet per second from each SSRC in the VoIP call

Scenario 1: VoIP – RTCP bandwidth requirements (2)

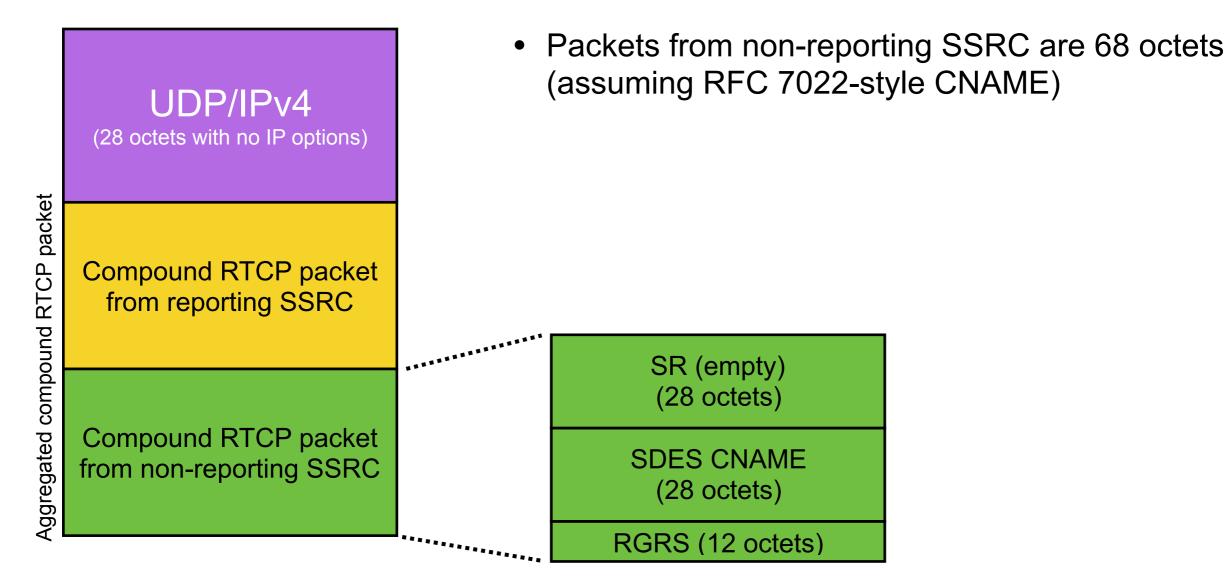
T _f (seconds)	N _r (frames)	<i>B_{rtcp}</i> (kbps)
20ms	2	36.7
20ms	4	19.1
20ms	8	10.4
20ms	16	6.0
60ms	2	12.2
60ms	4	6.4
60ms	8	3.5
60ms	16	2.0

Alternating compound and non-compound RTCP

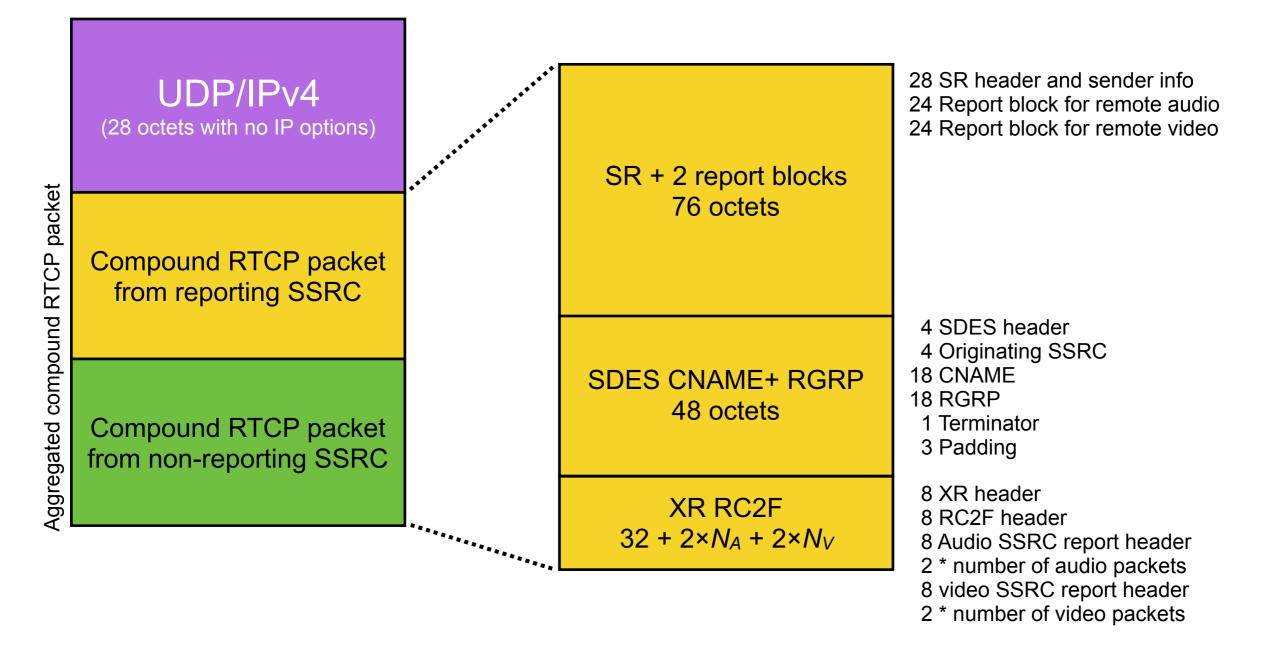
- Required RTCP bandwidth is reduced if a non-compound packet is sent between compound packets
- Reduced header overheads due to not sending SR/RR and SDES packets in some reports

Scenario 2: Video conference

- Point-to-point video conference
- Two parties, each sending audio and video
- Media bundled onto single 5-tuple \rightarrow 4 SSRCs
- 1 audio SSRC, 1 video SSRC, for each party
- Video frame interval = T_f (i.e., frame rate = $1/T_f$ frames per second)
- Desire RTCP reporting interval = $N_r \times T_f$
 - If $N_r = 1$, report every frame
 - If $N_r = 2$, report every other frame
 - ...
- Packets can be sent as compound or reduced size (non-compound) RTCP packets


UDP/IPv4 (28 octets with no IP options)

Compound RTCP packet from reporting SSRC


Compound RTCP packet from non-reporting SSRC

- Two SSRC → need to aggregate feedback into a single RTCP packet
 - Each packet is an aggregation of a compound RTCP packet from the audio SSRC and a compound RTCP packet from the video SSRC
- RTCP reporting groups are used:
 - One SSRC is designated as the reporting SSRC
 - The other SSRC delegates its reports to that SSRC
 - The reports are aggregated, so it doesn't matter which is chosen as reporting SSRC

Aggregated compound RTCP packet

Colin Perkins | https://csperkins.org/ | Copyright © 2016 All Rights Reserved

• Packets from reporting SSRC are $156 + 2 \times N_A + 2 \times N_V$ octets

<section-header><section-header><text><text><text>

• 28

• 156 + 2×*N*_A + 2×*N*_V octets

- 68 octets
- Total = $252 + 2 \times N_A + 2 \times N_V$ octets
- Since this reports on two SSRCs, it is halved before use: $S_c = (252 + 2 \times N_A + 2 \times N_V)/2$

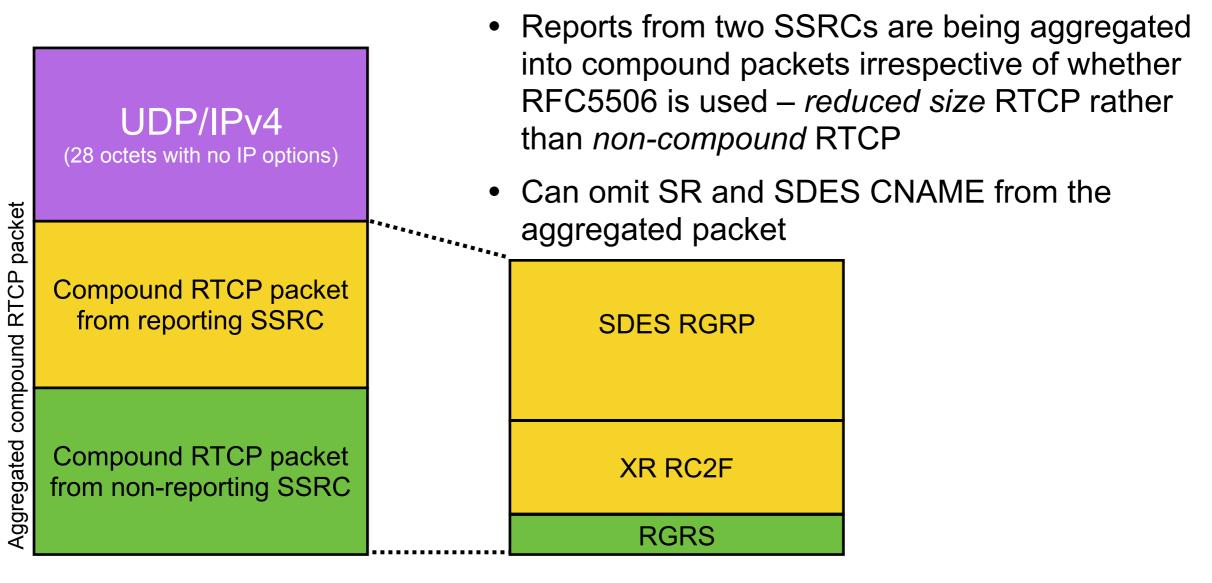
Aggregated compound RTCP packet

Scenario 2: Video conference – Brtcp calculation

- Assume:
 - Constant rate media
 - Video frames equal size
 - Audio at 50 packets per second (20ms frames)
 - MTU around 1500 octets
- RTCP bandwidth calculation as for scenario 1:

$$B_{rtcp} = (n \times (S_c + N_{nc} \times S_{nc})) / (N_r \times T_f \times (1 + N_{nc}))$$

with $S_c = (252 + 2 \times N_A + 2 \times N_V)/2$ $N_{nc} = 0$ T_f based on chosen video frame rate $N_r = 1$ (report on every frame)


Scenario 2: Video conference – required RTCP bandwidth

Media Rate (kbps)	Video Frame Rate (1/ <i>T</i> _f)	Video packets per report: <i>N</i> _v	Audio packets per report: <i>N</i> a	Required RTCP bandwidth, <i>B_{rtcp}</i> in kbps (and as % of media rate)
100	8	1	6	33.3 (33%)
200	16	1	3	65.0 (33%)
350	30	1	2	120.1 (35%)
700	30	2	2	121.9 (17%)
700	60	1	1	240.0 (34%)
1024	30	3	2	122.8 (12%)
1400	60	2	1	241.8 (17%)
2048	30	6	2	125.6 (6%)
2048	60	3	1	243.8 (12%)
4096	30	12	2	131.3 (3%)
4096	60	6	1	249.4 (6%)

Sending only compound RTCP packets

B_{rtcp} scales linearly with *N_r* (i.e., reporting every 2nd frame halves the required RTCP bandwidth)

Scenario 2: Video conference – reduced size packets

- Gives $S_{nc} = (96 + 2 \times N_v + 2 \times N_a)/2$
- Repeat calculation with $N_{nc} = 1$ indicating that we alternate regular and reduced size RTCP

Scenario 2: Video conference – required RTCP bandwidth

Media Rate (kbps)	Video Frame Rate (1/ <i>T</i> _f)	Video packets per report: <i>N</i> _v	Audio packets per report: <i>N</i> a	Required RTCP bandwidth, <i>B_{rtcp}</i> in kbps (and as % of media rate)
100	8	1	6	23.5 (23%)
200	16	1	3	45.5 (23%)
350	30	1	2	84.4 (24%)
700	30	2	2	85.3 (12%)
700	60	1	1	166.9 (24%)
1024	30	3	2	86.2 (8%)
1400	60	2	1	168.8 (12%)
2048	30	6	2	89.1 (4%)
2048	60	3	1	170.6 (8%)
4096	30	12	2	94.7 (2%)
4096	60	6	1	176.3 (4%)

Alternating regular and reduced-size RTCP packets

B_{rtcp} scales linearly with *N_r* (i.e., reporting every 2nd frame halves the required RTCP bandwidth)

Conclusions

- RTCP can be used for congestion control feedback with reasonable overhead, provided:
 - Care is taken with session configuration
 - Feedback rates scale with media rates low rate sessions may need to report on a smaller fraction of media frames
- Questions:
 - Can congestion control candidates operate with the amount of feedback available with reasonable overheads?
 - Are the overheads/configurations acceptable?
 - What guidance do we need to provide to implementers?