Transport Services for Low-Latency Real-Time Applications

Stephen McQuistin and Colin Perkins
University of Glasgow

Marwan Fayed
University of Stirling
Motivation and Goals

• To understand what transport services are desirable for low-latency real-time applications
 • Streaming video
 • Interactive video conferencing
 • Augmented reality
 • Gaming
 • ...

• To consider an appropriate abstract API for such services

• Derive from application requirements – not from existing transport protocols and APIs
 • Basis for TCP Hollywood (https://csperkins.org/research/tcp-hollywood/)
 • Concepts more general than that research project → relevant to TAPS?
What transport services do real-time applications need?

- Timing is an essential characteristic – application data has a lifetime, after which it is not useful
 - 10s - 100s milliseconds for interactive applications
 - Maybe $O(\text{seconds})$ for non-interactive applications
- Transport protocols should not send data that will arrive too late to be useful
- Transport needs knowledge of
 - Data timing and lifetime/deadline for use
 - Estimated network transit time (or, at least, RTT)
 - Estimated jitter buffer duration at receiver to manage scheduling of data for transmission
- API must expose timing information
What transport services do real-time applications need?

- Network is unreliable – “best effort” service
- Lost data recovered by FEC and/or retransmission
- Cannot guarantee delivery before a deadline
 - Might be able to estimate probably of delivery before deadline – but always $p < 1.0$
 - Potentially unbounded delay because retransmissions can be lost
- If deadlines are to be respected, transport has to offer a partial reliability mode
- API must expose that some data can be lost

<table>
<thead>
<tr>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial Reliability</td>
</tr>
<tr>
<td>Dependencies</td>
</tr>
<tr>
<td>Messages</td>
</tr>
<tr>
<td>Multiple streams</td>
</tr>
<tr>
<td>Multiple paths</td>
</tr>
<tr>
<td>Congestion control</td>
</tr>
<tr>
<td>Connections?</td>
</tr>
</tbody>
</table>
What transport services do real-time applications need?

- Partial reliability \rightarrow some data will not be received

- If data items are not independently useful, must track dependencies

 - Either:
 - Avoid wastefully sending data that depends on previously lost data
 - Send data that would miss its deadline, since needed to make use of later data

- API needs to allow data and dependencies to be identified
What transport services do real-time applications need?

- Application-level framing – split data into packets on meaningful boundaries
- Named objects that form the basis for dependency tracking, reliability
- API and transport services must respect message boundaries
- Timing, message identity, and dependencies allow out-of-order delivery and processing – avoid HoL blocking
What transport services do real-time applications need?

- Exposing messages boundaries in transport and API enables multi-streaming
 - Different streams of data multiplexed onto a single transport layer flow
 - Requires message boundaries be delineated, messages have identity that indicates what sub-flow they belong to
- API and transport must expose sub-stream identity
- Optional – desirable for efficiency and reliability
 - Each additional flow increases risk of interference from firewall, NAT, or other middlebox
 - Sub-streams make multiple flows appear as one
What transport services do real-time applications need?

- Devices increasingly have multiple interfaces and hence multiple paths between them
- Desirable to make use of these to balance load, reduce latency where possible

- Obvious extension, given multi-streaming and messages – build on MPTCP-style congestion control, etc.
 - Expose paths as first-class entity in API
 - Allows application to hint mapping sub-streams onto paths
What transport services do real-time applications need?

- Essential to avoid network overload – algorithms should take into account data timing and lifetime

- API should expose detailed congestion metrics – applications are non-elastic in timing, but flexible with what they send
 - Scope for close partnership between applications and transport – it’s to the application’s benefit to cooperate
What transport services do real-time applications need?

• Per-connection metadata useful for congestion control and in maintaining security association

• Connection set-up and teardown messages can help NAT/firewall traversal

• But, duration of many communication sessions can outlive a single connection

• API and transport services should expose long-lived metadata about endpoints, and ephemeral per-connection data
What transport services do real-time applications need?

- Existing transport protocols do not provide these services – although some are close
- Existing APIs don’t expose the features required

- The draft sketches minimal extensions to Sockets API that expose many of these features – to fully enable this needs a radical API change → Post Sockets?

- Are these services identified/exposed in TAPS?
- Should TAPS be considering the API work needed to support these services?