FECFRAME version 2
Adding convolutional FEC codes support to the FEC Framework
draft-roca-tsvwg-fecframev2-02

Vincent Roca, Inria, France
Ali Begen, Networked Media, Turkey

November 2016, IETF97, Seoul
Note well

- we, authors of -02 version, didn’t try to patent any of the material included in this presentation/I-D
- we, authors of -02 version, are not reasonably aware of patents on the subject that may be applied for by our employer
- if you believe some aspects may infringe IPR you are aware of, then fill in an IPR disclosure and please, let us know
FECFRAME / FECFRAMEv2 reminder

- a follow-up of [RFC 6363] describing FECFRAME
 - [RFC 6363], M. Watson, A. Begen, V. Roca, October 2011
- a shim layer for robust and scalable distribution of real-time flows
 - already part of 3GPP (e)MBMS standards
 - we start to have deployment experience
- FECFRAME relies on block FEC codes…
- …block codes add latency to everybody, always
- this issue is solved with convolutional FEC codes
 - good reception conditions: near zero latency 😊
 - bad reception conditions latency: still significantly inferior
- v2 adds convolutional code support
 - in a fully backward compatible way
Differences WRT last July's I-D (01 version)

- added an Implementation Status Section
 - as recommended in RFC 7942
 - leverages on a FECFRAME implementation (Vincent) being commercialized (Expway), for which interop. tests have been conducted
 - FECFRAMEv2 implementation under progress (Vincent)

- added Appendix B that explains differences WRT RFC 6363

- fixed a few minor things
we made progress in terms of block vs convolutional codes evaluation

- block FEC codes are totally sub-optimal for real-time flows
- true with small or larger block/encoding window sizes
- motivates the need for FECFRAME v2

V. Roca, B. Teibi, C. Burdinat, T. Tran, C. Thienot, "Block or Convolutional AL-FEC Codes? A Performance Comparison for Robust Low-Latency Communications", https://hal.inria.fr/hal-01395937, November 2016.
Q: version 2 or just an update of RFC 6363?

Background

- Version 2 does not remove any capability to FECFRAME
 - only adds the support of convolutional FEC Schemes

- A receiver decides to join or not after processing the SDP
 - FEC Encoding ID enables the receiver to determine whether it supports the convolutional FEC Scheme
 - Same mechanism for any unsupported FEC Scheme

- No notion of version in FECFRAME anyway
 - There's no header, only FEC Scheme signaling header/trailer

- However, from an implementation viewpoint, there are clear differences
 - Version 2 immediately indicates the capabilities
Next steps

- we do not expect major changes in future revisions

- **TODO 1**: finish FECFRAME v2 implementation
 - to be sure we didn't miss anything
 - sender already done, receiver will be okay for IETF98

- **TODO 2**: propose RLC convolutional FEC Scheme
 - all the convolutional FEC code complexity is here!
 - specify all code details
 - specify all signaling aspects
 - identified by a IANA registered FEC Encoding ID
 - default convolutional code we use in our implementation