
QUIC Tutorial
A New Internet Transport

● Brief history
● Motivations
● High-level overview of work
● Where the working group is today

● You may find this tutorial useful if:
○ HTTP/2 and QUIC are buzzwords to you
○ You can break BGP but think of TCP as too high-level
○ You can write a mobile app in 15 mins but have never

seen a tcpdump trace

What to expect in the next hour

2

● This is not a QUIC working group meeting

● If you are already participating in QUIC work
○ Feel free to offer clarifications at any time
○ No questions for you!
 (Wouldn't you much rather be staring at your laptop?)

Caveat Emptor

3

● Experimental protocol, deployed at Google starting in 2014
○ Between Google services and Chrome
○ Improved page load latency, video rebuffer rate
○ Successful experiment today
○ ~35% of Google's egress traffic (~7% of Internet traffic)
○ Akamai deployment in 2016

● QUIC wg formed in Oct 2016
○ Modularize and standardize QUIC in parts
○ HTTP as initial application

A QUIC history

4

What's HTTP/2?

5

● Q: What does a webpage look like?
● A: Containers, scripts, many objects

First, how does HTTP/1 work?

6

● Connection setup… the long way
○ 1 round-trip to set up a TCP connection
○ 2 round-trips to set up a TLS 1.2 connection
○ (before you rush to the mic, TFO and TLS 1.3 shortly)

● After setup, HTTP requests/responses flow over connection

First, how does HTTP/1 work?

7

TLS/TCP TLS/TCP

Client
(Browser) Web ServerCan we do better?

Dealing with head-of-line (HoL) blocking

8

TCP TCP

Client
(Browser) Web Server

TCP TCP
TLS/TCP TLS/TCP

Can we do better?

Better handling of HoL blocking: HTTP/2

9

TLS/TCP TLS/TCP

Client
(Browser) Web ServerCan we do better?

HTTP/2 stream

How does HTTP over QUIC work?

10

● Connection setup… the QUIC way
○ 0 round-trips to a known server (common)
○ 1 round-trip if crypto keys are not new
○ 2 round-trips if QUIC version negotiation needed
○ (I haven't forgotten about TFO and TLS 1.3)

● After setup, HTTP requests/responses flow over connection

What's HTTP over QUIC?

11

Client
(Browser) Web Server

QUIC QUIC

QUIC stream

HTTP/2 stream

Old Google QUIC

TLS

HTTP/2

TCP

IP

QUIC

TCP-like congestion
control, loss recovery

UDP

HTTP over QUIC

QUIC Crypto

12

QUIC working group

TLS

HTTP/2

TCP

IP

QUIC

TCP-like congestion
control, loss recovery

UDP

HTTP over QUIC

13

QUIC Crypto

QUIC working group

TLS

HTTP/2

TCP

IP

QUIC

TCP-like congestion
control, loss recovery

UDP

HTTP over QUIC

TLS 1.3

14

An integrated, modularized protocol

TLS

Application

TCP

IP

QUIC

TCP-like congestion
control, loss recovery

UDP

Application

Crypto handshake

15

Yes!

We're replaying hits from the 1990s and 2000s
(and adding some new things)

Hang on … some of this sounds familiar

16

TLS 1.3
Ongoing QUIC work uses TLS 1.3

TCP Fast Open (remember T/TCP?)
Needs support in client-OS and middleboxes
Limited to one packet

SCTP, SST, TCP Session, …
Shared ideas, but many subtle differences
We're happy to steal ideas!

Hang on … some of this sounds familiar

17

● Deployability and evolvability
● Low latency connection establishment
● Multistreaming
● Better loss recovery and flexible congestion control
● Resilience to NAT-rebinding (Connection IDs vs. 4-tuple)
● Multipath for resilience and load sharing

QUIC Design Aspirations

18

Uses UDP as the substrate
enables deployment through middleboxes
allows userspace implementation

Version negotiation
enables protocol wire format evolution

Fully authenticated and mostly encrypted headers
avoids network ossification
befuddles network operators :-(

Deployability and Evolvability

19

QUIC packets (previous)

20

Flags Connection ID (opt)
Version (opt)
Packet Number

STREAM

Regular Packets

ACK

WINDOW_UPDATE
Encrypted Payload

(Frames)

Flags Connection ID

Supported Version 1

Supported Version 2

Supported Version 3

Version Negotiation Packet
(Unencrypted)

Flags Connection ID

Public Reset fields
(TBD)

Public Reset Packet
(Unencrypted)

QUIC packets (proposed)

21

1 Connection ID (64)

Version (32)
Packet Number (32)

Long Header Packets

Payload
Type-dependent

Not always encrypted

0 Connection ID (opt)
Packet Number (8/16/32)

Short Header Packets
(optimized for packets encrypted

with TLS 1-RTT key)

Encrypted Payload
(Frames)

Type (5)C K
Type (7)

QUIC builds on decades of experience with TCP

Incorporates TCP best practices
 TCP-like congestion control (NewReno, Cubic), FACK, TLP,
F-RTO, Early Retransmit, …

Richer signaling than TCP

Congestion Control & Loss Recovery

22

Retransmitted packets consume new sequence number

no retransmission ambiguity

prevents loss of retransmission from causing RTO

More verbose ACK

TCP supports up to 3 SACK ranges

QUIC supports up to 256 ACK ranges

explicit packet receive times

enables ACK decimation

Richer Signaling Than TCP

23

Turning an amateur protocol into a professional one
A QUIC makeover

Figuring out how to
○ map HTTP cleanly to QUIC
○ use TLS 1.3 with QUIC
○ resolve open questions in QUIC
○ make QUIC work for non-HTTP apps

What's the QUIC wg up to?

24

No.

Google's QUIC was an experiment
QUIC wg uses the experiment as a starting point
Already moved miles away from experiment

A great example of running code informing protocol design.

Is this just Google's QUIC?

25

QUIC Implementations

Chromium (open source)
https://cs.chromium.org/chromium/src/net/quic/

quic-go (open source implementation in Go)
https://github.com/lucas-clemente/quic-go

26

https://cs.chromium.org/chromium/src/net/quic/
https://cs.chromium.org/chromium/src/net/quic/
https://github.com/lucas-clemente/quic-go
https://github.com/lucas-clemente/quic-go
https://github.com/lucas-clemente/quic-go

Debugging Tools: Wireshark

27

Debugging Tools: Chrome

chrome://net-internals
(demo if time permits)

28

