
HTTP/QUIC

Update for HTTPbis WG

1

Google’s QUIC Experiment

2

The IETF Version

3

A.k.a.

4

QUIC in a Nutshell

• Handshake establishes QUIC version, parameters, crypto,
and app protocol in 0-2 RTTs

• 0-RTT if you get the version right and can do TLS 1.3 resumption

• QUIC packets are encrypted containers of frames

• Loss detection identifies lost packets

• …but lost frames get retransmitted

• Most frames are control-oriented; STREAM frames
contain data from a particular stream

• Odd-numbered streams are client-initiated

• Even-numbered streams are server-initiated
5

Why? Agility!
• A UDP-based protocol can be implemented at the app

layer

• Ships with apps, so updates at the app’s cadence, not the OS
vendor’s or device owner’s

• Ability to “reach inside” and pass more information if
appropriate

• But doesn’t have to be!

• An authenticated/encrypted protocol blocks middlebox
tampering

• Apparently protocol innovation is hard to deploy because
transparent intermediaries change bits or choke! Who knew?

• QUIC incorporates many proposed TCP (or SCTP) improvements
which haven’t been successfully deployed 6

QUIC as Transport

TCP
• Headers protected against

accidental corruption

• Payload in the clear (app can
encrypt)

• Single-bytestream abstraction

• Congestion control

• Reliable delivery

• In-order delivery

QUIC
• Headers protected against any

modification

• Payload encrypted

• Multiple-bytestream abstraction

• Congestion and flow control

• Reliable delivery

• In-order delivery on each stream

• Order between streams not
guaranteed

7

QUIC as HTTP/2 Substrate

H2 over TLS over TCP
• Headers protected against any

modification

• Payload encrypted

• Multiple message-sequence
abstraction with message types

• Congestion and flow control

• Reliable delivery

• In-order delivery across all
streams

• Relies on ordering between
frames on different streams

QUIC
• Headers protected against any

modification

• Payload encrypted

• Multiple-bytestream abstraction

• Congestion and flow control

• Reliable delivery

• In-order delivery on each stream

• Order between streams not
guaranteed

8

QUIC as HTTP/2 Substrate

H2 over TLS over TCP
• Headers protected against any

modification

• Payload encrypted

• Multiple message-sequence
abstraction with message types

• Congestion and flow control

• Reliable delivery

• In-order delivery across all
streams

• Relies on ordering between
frames on different streams

QUIC
• Headers protected against any

modification

• Payload encrypted

• Multiple-bytestream abstraction

• Congestion and flow control

• Reliable delivery

• In-order delivery on each stream

• Order between streams not
guaranteed

9

Connection Negotiation

• HTTP/QUIC support detected by use of Alt-Svc

• New Alt-Svc “quic” parameter as version negotiation
hint

• QUIC uses optimistic version negotiation

• Client proposes a version

• Server either accepts or responds with a list of versions

• Client retries with a mutually supported version

• Discovering supported version(s) via Alt-Svc saves 1 RTT

• Currently no way to declare an HTTP/QUIC URL directly

• “httpq” proposed…?

• ALPN token is hq

• hq-xx for drafts (e.g. hq-02) 10

Google QUIC Stream Usage

• Stream 1 reserved for crypto

• Stream 3 reserved for abridged
HTTP/2 session

• Reflects migration path from
TCP to QUIC

• Functionality added to QUIC is
removed from HTTP/2

• PING

• GOAWAY

• Flow Control

11

1 3

N

QUIC streams

0 1

HTTP/2 streams

Crypto

N

Google QUIC Stream Usage

• Stream 1 reserved for crypto

• Stream 3 reserved for abridged
HTTP/2 session

• HTTP/2 streams straddle QUIC
Stream 3 and another QUIC
stream

• H2 Stream 0 is only on QUIC
Stream 3

• Other QUIC streams replace
DATA frames

• All other frames (HPACK) on
QUIC Stream 3

12

1 3

N

QUIC streams

0 1 5

HTTP/2 streams

Crypto

N

Current HTTP/QUIC Stream Usage

• Stream 3 – Connection Control
Stream

• Carries session-wide info
(SETTINGS, PRIORITY)

• Each request occupies two
streams

• Message control stream –
HEADERS, etc.

• Unframed data stream carries
message payload

• No muxing in HTTP-layer
framing, but still uses frames

13

1

QUIC streams

HTTP requests

Crypto

Req

3 5 7 9 11

Control
Frames

Req

…
Frames Data Frames Data

Adopted EXTENDED_SETTINGS

• Based on draft-bishop-httpbis-extended-settings

• HttpBis feedback: Save for protocol rev, not an HTTP/2 extension
with separate identifier space

• Borrows heavily from RFC7540 SETTINGS text

• Values are length-prefixed blobs

• Optimization for Boolean values

• If length=0, true; not sent is false
14

HTTP/2 SETTINGS
HTTP/QUIC
SETTINGS

Identifier (16)

Value (32)

Identifier (16)

Contents? (*) …

Length (16)

Where there is no order….

• Changes to priority tree aren’t commutative

• PRIORITY frames on Stream 3 (== Stream 0 in HTTP/2) to
preserve ordering

• SETTINGS ACK gets really hard

• Need to ACK on every open stream, plus on Stream 3 identify
which streams were open when the SETTINGS frame was
processed

• Simpler: Just don’t allow mid-session changes; new connections
are cheap

• And then there’s HPACK….

15

Shoehorning HPACK

• HTTP/QUIC -02 still uses HPACK

• Adds a counter on HPACK frames

• Requires decoder process frames
in encode-order

• No more HOLB than before, but
no less

• Can’t reset message control
streams

• Alternatively, QPACK proposals:

• draft-bishop-quic-http-and-
qpack

• draft-krasic-quic-hpack

16

Sequence Number

HPACK Data….

HTTP/2 Extensions in HTTP/QUIC

• Separate error registry

• Because QUIC has a unified error space for use in RST_STREAM,
CONNECTION_CLOSE

• Need to redefine extension-based error codes

• Shared frame registry with HTTP/2

• But many HTTP/2 frames don’t exist and none are identical!

• Need to define how extension’s frames work in different
context; some changes could be required

• Shared SETTINGS registry with HTTP/2

• But half the HTTP/2 settings don’t exist and one has opposite
semantics!

• Need to define what extension settings mean in different
context; some changes could be required

• Discussion on splitting from HTTP/2 IANA registries 17

Summary

• QUIC is a new alternative to TCP

• UDP is just an design detail

• QUIC includes many features HTTP/2 constructed on top
of TCP

• …which means we no longer need them at our layer

• HTTP/QUIC isn’t quite HTTP/2, but it’s related enough it
should look quite familiar

• HTTP/QUIC, like HTTP/2, attempts to carry HTTP
semantics unchanged

• For semantically-different work, QUIC may be an excellent
transport, but a poor WG home

18

