
Network Topology Model
draft-ietf-i2rs-yang-network-topo-12.txt

IETF 98, Chicago, 29 March 2017

Alexander Clemm (Huawei), Jan Medved (Cisco),
Robert Varga (Pantheon), Nitin Bahadur (Bracket Computing),
Hari Ananthakrishnan (Packet Design), Xufeng Liu (Ericsson)

Updates
• Went through WGLC yet here we are back again

• Went through six updates (from -06 to -12),
e.g. with regards to security considerations and use case appendix

• During YANG doctor review, flag was thrown regarding distinction
between topologies that are configured vs. topologies that are
discovered from the network (“server-provided”)

• Subteam spent several iterations discussing the proper solution
– Kent Watsen (YANG doctor shepherd), Vishnu Pavan Beeram, authors

– Susan Hares (document shepherd), Alia Atlas

– Revisited requirements, collected use cases, documented alternatives

– Document will be updated as we converge on a consensus

module: network

+-- rw networks

+--rw network* [network-id]

+--rw network-id network-id

+--rw network-types

+--ro server-provided? boolean

+--rw supporting-network* [network-ref]

| +--rw network-ref leafref

+--rw node* [node-id]

| +--rw node-id node-id

| +--rw supporting-node* [network-ref node-ref]

| | +--rw network-ref leafref

| | +--rw node-ref leafref

| +--rw lnk:termination-point* [tp-id]

| +--rw lnk:tp-id tp-id

| +--rw lnk:supporting-termination-point*

| [network-ref node-ref tp-ref]

| +--rw lnk:network-ref leafref

| +--rw lnk:node-ref leafref

| +--rw lnk:tp-ref leafref

+--rw lnk:link* [link-id]

+--rw lnk:link-id link-id

+--rw lnk:source

| +--rw lnk:source-node leafref

| +--rw lnk:source-tp? leafref

+--rw lnk:destination

| +--rw lnk:dest-node leafref

| +--rw lnk:dest-tp? leafref

+--rw lnk:supporting-link* [network-ref link-ref]

+--rw lnk:network-ref leafref

+--rw lnk:link-ref leafref

n
etw

o
rk.yan

g
n

etw
o

rk-to
p

o
lo

gy.yan
g

Model Recap

• Express horizontal
relationships:
nodes – tps – links

• Express vertical
relationships: layering

• Express various constraints:
• Supporting nodes/links/

tps must be part of
supporting (underlay)
topo

• A supporting link must
be terminated by a
supporting tp on a
supporting node

• Etc
• Base model for more specific

topologies that augment this
model, e.g. L2, L3, service, …

So, what’s the issue
• Some topologies are discovered, others are configured

• E.g. overlays / underlays

• Account for both possibilities in the model while still capturing
semantic constraints

• Original solution (still captured in model):
– Include leaf “server-provided” with each topology that indicates owner/who

populated

– Presence indicates populated by topology discovery app (that coresides on
device)

– Advantages: simple model, current implementations

– Drawback: “server-provided” data reminiscent of state
(even if provided by “client” that coresides on server, not unlike other
competing-clients scenarios)

• Locking

• Backup/Restore will have restored data immediately overwritten

• Various other solutions considered

Tree split option
(option 1)

module foo {

container nodes {

config true;

list node {

key "name";

leaf name { type string; }

leaf dependency {

type leafref {

path "../node/name"

require-instance false;

description
"In the case when a configured node (i.e. in the running DS)

has a dependency on a node that is not configured, the system

may try to resolve the dependency as operational state data

(i.e. under the /opstate-nodes tree). As operational state

data may have a lifecycle independent of configuration, there

is no guarantee that the opstate data will exist. Therefore,

application of the configuration node is conditional, resulting

in an effect much like pre-provisioning interfaces in RFC 7223.";

} }

uses node-attributes;

} }

container opstate-nodes {

config false;

list node {

key "name";

leaf name { type string; }

leaf dependency {

type leafref {

path "../node/name"

require-instance false;

} }

uses node-attributes;

} } }

Tree split option
(option 1)

module foo {

container nodes {

config true;

list node {

key "name";

leaf name { type string; }

leaf dependency {

type leafref {

path "../node/name"

require-instance false;

description
"In the case when a configured node (i.e. in the running DS)

has a dependency on a node that is not configured, the system

may try to resolve the dependency as operational state data

(i.e. under the /opstate-nodes tree). As operational state

data may have a lifecycle independent of configuration, there

is no guarantee that the opstate data will exist. Therefore,

application of the configuration node is conditional, resulting

in an effect much like pre-provisioning interfaces in RFC 7223.";

} }

uses node-attributes;

} }

container opstate-nodes {

config false;

list node {

key "name";

leaf name { type string; }

leaf dependency {

type leafref {

path "../node/name"

require-instance false;

} }

uses node-attributes;

} } }

Both trees will mirror each other
• Equivalent nodes in each

(not stats in one, config params in the other)
• Augmentation needs to target both trees
Use “grouping” and “uses” to reuse definitions
• Mitigate augmentation complexity through augmentation best practices –

use grouping/uses to avoid having to augment multiple target nodes with same attributes
Underlay references are “require-instance false”
• State branch object instantiated only when target true

Metadata Option (option 2)

module foo {
import ietf-Netconf {prefix nc;}
import ietf-yang-metadata {prefix md;}
md:annotation server-provided {

type boolean;
}
container nodes {

config true;
list node {

key "name";
leaf name { type string; }
leaf dependency {

type leafref {
path "../node/name"'

} } } }
augment /nc:get-config/nc:input {

leaf with-server-provided {type Boolean;}
} } • Compare “with defaults” option

• Flag is used to indicate whether to return
all data, or configured data only

2a: specific to topology
2b: generic, applicable beyond topology

More alternatives
Shared on the list:

• Option 1: Separate config true and and false trees

• Option 2: Metadata annotation + get-config flag extension for data retrieval

Other flavors considered

• Option 3: Config true (drop “server-provided” leaf)
– Rely on NACM to withhold authorization to modify server-provided topology layers

– Eventual migration to revised datastores solution to provide server-provided distinction

• Option 4: Make entire model config false and use RPCs
– Not very YANG-ish model – replace a model with RPCs

• Option 5: Wait for revised-datastores solution

• Config true (drop “server-provided” leaf)
– Like option 3: basically, the current model, with “server-provided” leaf dropped

– Ruled out due to concern that this will hold us back for years (as well as dependent modules)

Per Netmod meeting, revised datastores is close to completion (2-3 months)

• In this case, option 5 suddenly become a lot more attractive….

Recommendation
• Recommendation prior to IETF 98: metadata (option 2A)

– Easiest and most straightforward to accommodate e.g. by TEAS

– Avoids tree split, holistic retrieval of topology data

– Tree split option would have been possible as well, but model complexity a concern

• Recommendation since yesterday: Revised Datastores (option 5)

– Ruled out initially due to uncertain timeline; having to wait for years not an option

– Promises to get through the process shortly (2-3 months)

– Recommendation for new modules to follow

– Least disruptive with regards to current model

• Implies the following next steps for the draft

– Update the model (basically, drop server-provided leaf)

– Add snippets that explain how revised datastores will address the
configurable overlay/auto-populated underlay issue

– Update other models accordingly (e.g. L3 topolog draft-ietf-i2rs-yang-l3-topology)

Is this agreeable to the Working Group? Anything we have missed?

Thank you

