
BBR Congestion Control:

An Update

Neal Cardwell, Yuchung Cheng,
C. Stephen Gunn, Soheil Hassas Yeganeh,

Van Jacobson

https://groups.google.com/d/forum/bbr-dev

1IETF 98: Chicago, March 27, 2017

https://groups.google.com/d/forum/bbr-dev
https://groups.google.com/d/forum/bbr-dev

● Review of BBR [also see IETF 97 ICCRG BBR slides]:
○ Model
○ Algorithm
○ Behavior

● Deployment at Google: fully deployed for Google TCP WAN traffic
○ Google.com
○ YouTube
○ Internal WANs

● Active and upcoming work

2

Outline

https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf

2011: many reported excessive buffering and delays on the Internet (a.k.a. bufferbloat)

2012: single-connection HTTP/2 was much slower than multi-conn HTTP/1 on lossy links

2013: poor TCP throughput on WANs w/ commodity shallow-buffer switches

Culprit: loss-based congestion control (Reno, then CUBIC)

● Packet loss alone is not a good proxy to detect congestion
● Loss-based CC is overly sensitive to losses that come before congestion

○ 10Gbps over 100ms RTT needs <0.000003% packet loss
○ 1% loss over 100ms RTT gets 3Mbps

● Loss-based CC bloats buffers if loss comes after congestion

3

Problems with loss-based congestion control

4

De
liv

er
y

ra
te

BDP BDP + BufSize

RT
T

Loss-based CC (CUBIC / Reno)

amount in flight

Loss-based congestion control in deep buffers

5

De
liv

er
y

ra
te

BDP

RT
T

amount in flight

Loss-based congestion control in shallow buffers

Loss-based CC (CUBIC / Reno)

BDP + BufSize

Multiplicative Decrease upon
random burst losses

=> Poor utilization

6

De
liv

er
y

ra
te

BDP BDP + BufSize

RT
T

Optimal: max BW and min RTT (Kleinrock)

amount in flight

Optimal operating point

BBR: Design

BBR = Bottleneck Bandwidth and Round-trip propagation time

- Model network path
- Dynamically estimate windowed max BW and min RTT on each ACK

- Control sending based on the model, to...
- Sequentially probe max BW and min RTT, to feed the model samples
- Pace near estimated BW
- Vary pacing rate to keep inflight near BDP

- Seek high throughput with a small queue
- Approaches maximum available throughput for random losses up to 15%
- Maintains small queue independent of buffer depth

7

Cubic (Hystart) BBR

Initial rate 10 packets / RTT

Acceleration 2x per round trip

Exit
acceleration

A packet loss
or
significant RTT
increase

Delivery rate
plateaus

BBR: faster for short flows, too

50Mbps

BBR and Cubic time series overlaid. BBR downloads 1MB 44% faster than Cubic. Trials
produced over LTE on Neal’s phone in New York

BBR

CUBIC

BBR is deployed for WAN TCP traffic at Google

vs CUBIC, BBR yields:

- 2% lower search latency on google.com
- 13% larger Mean Time Between Rebuffers on YouTube
- 32% lower RTT on YouTube
- Loss rate increased from 1% to 2%

9

● Cellular or Wi-Fi gateways adjust link rate based on the backlog
○ BBR needs to deliberately keep some queue

● Delay alone is an extremely noisy signal
○ e.g. waiting for a slot on a shared medium (radio or cable)

● NICs or middleboxes hold up or decimate ACK packets
○ e.g. one TCP ACK for up to +200 packets

● Token-bucket traffic policers allow bursts, then drop
○ Common in developing regions and mobile carriers

● Middle-boxes modify TCP receive window to throttle sender
● ...

10

Lessons from deploying a new C.C. in the real Internet

● RFC 793 is not a sufficient roadmap for how to implement a CC protocol
● Need a framework providing much more detailed accounting of what's going on

○ Per-connection totals: SACKed, lost, retransmitted, in-flight
○ Attaching detailed per-TSO-chunk accounting info

■ (Re)transmit/SACK state => enables SACK scoreboard => RFC6675 recovery
■ Transmission times => enables time-based loss reasoning => RACK
■ Delivery rate state => enables delivery-based CC => BBR

11

Lessons from implementing a new C.C.

● Linux TCP rate sampling code is available to Linux apps using any C.C.
○ getsockopt(TCP_INFO)

● BBR exports its bandwidth (bw) and two-way propagation delay (min_rtt) estimates
○ getsockopt(TCP_CC_INFO)
○ Better than cwnd/rtt

● Possible applications:
○ Exporting BW to video apps to pick the best video format
○ ...

12

An opportunity: leveraging BBR's path model

Improving BBR

BBR can be even better:

○ Smaller queues: lower delays, less loss, more fair with Reno/CUBIC
■ Potential: cut RTT and loss rate in half for bulk flows

○ Higher throughput with wifi/cellular/DOCSIS
■ Potential: 10-20% higher throughput for some paths

○ Lower tail latency by adapting magnitude of PROBE_RTT
■ Potential: usually PROBE_RTT with cwnd = 0.75*BDP instead of cwnd=4

End goal: improve BBR to enable it to be the default congestion control for the Internet

We have some ideas for tackling these challenges

We also encourage the research community to dive in and improve BBR!

Following are some open research areas, places where BBR can be improved...
13

Open research challenges and opportunities with BBR

Some of the areas with work (experiments) planned or in progress:

● Reducing queuing/losses on shallow-buffered networks and/or with cross-traffic:
○ Quicker detection of full pipes at startup
○ Gentler PRR-inspired packet scheduling during loss recovery
○ Refining the bandwidth estimator for competition, app-limited traffic
○ Refining cwnd provisioning for TSO quantization
○ More frequent pacing at sub-unity gain to keep inflight closer to available BDP
○ Explicit modeling of buffer space available for bandwidth probing

● Improving fairness vs. other congestion controls
● Reducing the latency impact of PROBE_RTT by adaptively scaling probing
● Explicitly modeling ACK timing, to better handle wifi/cellular/cable ACK aggregation

14

https://tools.ietf.org/html/rfc6937

 Most recent experiments

● Reducing queuing/losses on shallow-buffered networks and/or with cross-traffic:
○ Quicker detection of full pipes at startup
○ Gentler PRR-inspired packet scheduling during loss recovery
○ More frequent lower-rate pacing to keep inflight closer to available BDP

.... resulting fairness?

In deep buffers, BBR's fairness to Reno matches or exceeds CUBIC's fairness to Reno...

15

https://tools.ietf.org/html/rfc6937

16

In deep buffers: BBR, CUBIC friendliness to 1x Reno

1x BBR

1x Reno

1x Reno

1x CUBIC
10 Mbps bw

40ms RTT

1 MByte buffer

120 sec test

17

1x BBR

4x Reno

4x Reno

1x CUBIC
10 Mbps bw

40ms RTT

1 MByte buffer

120 sec test

In deep buffers: BBR, CUBIC friendliness to 4x Reno

18

2x BBR

16x Reno

16x Reno

2x CUBIC10 Mbps bw

40ms RTT

1 MByte buffer

240 sec test

In deep buffers: BBR, CUBIC friendliness to 16x Reno

Latest experiment: modeling available buffer space

Goal: How to reduce buffer pressure and improve fairness in shallow buffers?

What if: we try to use no more than half of flow's estimated share of the bottleneck buffer?

 full_rtt: average of RTT samples in first round of loss recovery phases in last N secs

 if (full_rtt)

 my_buffer_target = (full_rtt - min_rtt) * bw / 2

 my_max_cwnd = bw * min_rtt + my_buffer_target

Next: how to probe gently but scalably when there are no recent losses?

e.g.: my_buffer_target *= 1.25 for each second of active sending?

19

 Looking for ways to contribute?

● More data is always useful
● And Google uses many kinds of networking traffic, but not all
● So... testing, testing, testing!

○ wifi LANs
○ AQM: experiences with Codel, PIE, DOCSIS AQM, ...
○ ...

● We love pcaps (or recipes to reproduce behaviors)
● If you're trying to use BBR in a realistic scenario, and it's not working, let us know!

20

Conclusion

● Loss-based C.C., a 30-year-old approach, is failing on modern fast networks
○ Packet loss signal alone is too late (big queues) or too noisy (underutilization)

● BBR uses BW & RTT (instead of a window) to model the network
○ Goal: maximize bandwidth, then minimize queue

● Deployed on Google.com, YouTube, B4/B2 (for TCP)
○ Better performance for web, video, RPC traffic
○ Open sourced in Linux TCP, QUIC

● Applying BBR to QUIC, FreeBSD TCP @ NetFlix

● Actively working on improving the algorithm

21

http://git.kernel.org/cgit/linux/kernel/git/davem/net-next.git/commit/?id=0f8782ea14974ce992618b55f0c041ef43ed0b78
https://chromium.googlesource.com/chromium/src/net/+/master/quic/core/congestion_control/bbr_sender.cc
https://www.chromium.org/quic

 Q & A

https://groups.google.com/d/forum/bbr-dev

research paper, code, mailing list, talks, etc.

Special thanks to Eric Dumazet, Ian Swett, Jana Iyengar, Victor Vasiliev, Nandita
Dukkipati, Pawel Jurczyk, Biren Roy, David Wetherall, Amin Vahdat,
Leonidas Kontothanassis, and {YouTube, google.com, SRE, BWE} teams.

22

https://groups.google.com/d/forum/bbr-dev
https://groups.google.com/d/forum/bbr-dev

Backup slides...

23

BDP = (max BW) * (min RTT)

24

De
liv

er
y

ra
te

BDP BDP + BufSize

RT
T

amount in flight

Est min RTT = windowed min of RTT samples

Est max BW = windowed max of BW samples

Estimating optimal point (max BW, min RTT)

25

De
liv

er
y

ra
te

BDP BDP + BufSize

RT
T

amount in flight

Only
min RTT is
visible

Only
max BW
is visible

To see max BW, min RTT: probe both sides of BDP

Confidential + Proprietary

optimal operating point

26

BBR: model-based walk toward max BW, min RTT

Confidential + Proprietary 27

STARTUP: exponential BW search

Confidential + Proprietary 28

DRAIN: drain the queue created during STARTUP

Confidential + Proprietary 29

PROBE_BW: explore max BW, drain queue, cruise

Confidential + Proprietary 30

Minimize packets in flight for max(0.2s, 1 round trip)
after actively sending for 10s. Key for fairness among
multiple BBR flows.

PROBE_RTT: drains queue to refresh min RTT

31

RT
T

(m
s)

Da
ta

 se
nt

 o
r A

CK
ed

 (M
By

te
s)

STARTUP DRAIN PROBE_BW

CUBIC (red)
BBR (green)
ACKs (blue)

31

BBR and CUBIC: Start-up behavior

Confidential + Proprietary

1. Flow 1 briefly slows down to reduce its queue every 10s (PROBE_RTT mode)
2. Flow 2 notices the queue reduction via its RTT measurements
3. Flow 2 schedules to enterslow down 10 secs later (PROBE_RTT mode)
4. Flow 1 and Flow 2 gradually converge to share BW fairly

bw = 100 Mbit/sec
path RTT = 10ms

32

BBR multi-flow convergence dynamics

BBR vs CUBIC: synthetic bulk TCP test with 1 flow, bottleneck_bw 100Mbps, RTT 100ms 33

BBR: fully use bandwidth, despite high packet loss

34BBR vs CUBIC: synthetic bulk TCP test with 8 flows, bottleneck_bw=128kbps, RTT=40ms

BBR: low queue delay, despite bloated buffers

BBR: robust detection of full pipes -> faster start-up

- BBR STARTUP: estimate reached full BW if BW stops increasing significantly
- CUBIC Hystart: estimate reached full BW if RTT increases significantly
- But delay (RTT) can increase significantly well before full BW is reached!

- Shared media links (cellular, wifi, cable modem) use slotting, aggregation
- e.g.: 20 MByte transfers over LTE (source: post by Fung Lee on bbr-dev list,

2016/9/22):

35

https://groups.google.com/d/msg/bbr-dev/UqbrT0PVg_8/EEUKZNPhAAAJ
https://groups.google.com/d/msg/bbr-dev/UqbrT0PVg_8/EEUKZNPhAAAJ
https://groups.google.com/d/msg/bbr-dev/UqbrT0PVg_8/EEUKZNPhAAAJ

1xCUBIC v 1xBBR goodput: bw=10Mbps, RTT=40ms, 4min transfer, varying buffer sizes

36

Improving dynamics w/ with loss-based CC

At first CUBIC/Reno gains an advantage by filling deep buffers

But BBR does not collapse; it adapts: BBR's bw and RTT probing tends to drive system toward fairness

Deep buffer data point: 8*BDP case: bw = 10Mbps, RTT = 40ms, buffer = 8 * BDP

 -> CUBIC: 6.31 Mbps vs BBR: 3.26 Mbps

37

BBR and loss-based CC in deep buffers: an example

