Overheads Reduction for IS-IS Enabled Spine-Leaf Networks

draft-chen-isis-sl-overheads-reduction-00

Zhe Chen, Xiaohu Xu

Huawei

2017.3.31

Motivations

- When using IS-IS in highly symmetric topologies (e.g., Fat-Tree, Leaf-Spine), Leaf nodes benefit littl e from learning the whole topology.
- Current IS-IS's area-partition and multi-level funct ions cannot solve the problem.
- In this document:
- IS-IS router SHOULD check the Area Identifier before (r e)advertising a LSP.
- Operators can use IS-IS's area-partition and multi-level functions to prevent Leaf nodes from learning the who le topology.

Solution Overview

- Using IS-IS's area-partition and multi-level functions to preve nt Leaf nodes from learning the whole topology:

Solution Overview

- Current IS-IS router:

Area1 \& Area2

Solution Overview

- In this document, IS-IS router SHOULD check the Are a Identifier before (re)advertising a LSP:

Area1 \& Area2

Details

- Before an IS-IS router advertises a Level-1 LSP to a Level-1 neighbor, it SHOULD compare the AIDs associated with the LSP and the AIDs ass ociated with the neighbor:
- If they have at least one AID in common, the route r SHOULD advertise the LSP to the neighbor.
- Otherwise, the router MUST NOT advertise the LSP to the neighbor.

Discussions

- The AID checking mechanism puts little effect on the current usage:
- In usual cases, an IS-IS router is assigned no more than one AID.
- An IS-IS router is assigned more than one AIDs onl y when 1) it is desirable to change the AID of an ar ea, 2) to merge two areas into one area, or 3) to pa rtition an area into two areas.

Next Steps

- We need more reviews and comments.

