How Broadcast Data Reveals Your Identity and Social Graph

Rolf Winter <rolf.winter@hs-augsburg.de>
Michael Faath <michael.faath@hs-augsburg.de>
Fabian Weisshaar <fabian.weisshaar@hs-augsburg.de>
Idea

- Connect to a large network and analyse everything received
 - Excluding the traffic the listener introduces
- Are there protocols “polluting” the network?
- What can we learn from this data?
 - Protocols
 - Devices
 - Users and groups of users
Experiment locations

- The lab
 - Controlled environment
- A wireless campus network: Eduroam
 - Over 6,000 students and staff
- IETF Meeting network
 - IETF 93 - Prague / IETF 94 - Yokohama
Legal aspects - I am not a lawyer

- IETF Meeting experiment announcement\(^1\)
 - First reaction: “doesn't this fall under human subjects rules for experiments [...]?”\(^1\)
 - Over 40 mailing list responses
 - Experiment might break EU data protection laws
 - But: more positive than negative reactions

- Legal questions could not be resolved in time
 - Experiment for the 93rd IETF meeting cancelled
 - → Proposal to establish the IETF Experiment Ethics Review Board\(^2\)

\(^2\) https://www.ietf.org/blog/2015/09/experiment-ethics-and-privacy/
Legal aspects - I am not a lawyer

- Legal statement by the German National Research and Education Network (DFN)¹
 - It is not okay (for universities in Germany) to store and analyze broadcast data
 - Consent of every user in the network is necessary
 - It \textit{might} be okay to store and analyze for specific research if privacy of users is ensured

- Remove all personally identifiable information
 - MACs, IPs, hostnames etc. hashed
 - Analysis only for selected protocols possible
 - Don’t store raw data

¹ H. Sporleder, “Dein Name ist Programm”, DFN Infobrief Recht, pp. 16–18, Nov. 2015
Data analysis: Campus network

- All eduroam users on campus are in one broadcast domain
 - Plus all of the VPN users from home
- Six months
- ~40 GB of data seen
 - ~215 MB per day on average
Data analysis: Campus network

- ~35,000 MAC addresses seen
 - max. 21,000 from real devices
- ~90% UDP packets
 - Focus on most seen protocols
 - Analysis of payload
Desktop app of a popular cloud storage service

- Used to store and share data in the cloud
- Implements a protocol for local data exchange
- Broadcasts multiple packets every 30 seconds
 - `host_int`
 - Unique ID for application installation
 - Tracking of a user even if IP or MAC address changes
 - `namespaces`
 - List of unique IDs for all known shares

How Broadcast Data Reveals Your Identity and Social Graph
Data analysis: Cloud storage service

- 2,560 application installations
- 9,361 unique shares
- Students might use the application to share data from lectures
 - ...can we draw a graph from this?
Data analysis: Cloud storage - a community graph

- Identify communities (Louvain method\(^1\))

Data analysis: Hostnames

● Some protocols broadcast hostnames
 ○ mDNS, NetBIOS, LLMNR, ...

● 7,600 hostnames found
 ○ removed duplicates and typical strings (“iphone”, “macbook”, ...)
 ○ 5,300 host names remaining

● Lots of users reveal
 ○ Language (“iPhone von John Doe”)
 ○ Device vendor / model (“MacBook Pro”)
 ○ Locations and functions (“printer”, “cs-faculty”)
 ○ Names (login names, nicknames, initials)
Data analysis: Hostnames

- Helps to partially identify nodes
 - But we can do more
 - If there would be a database containing all students...

How Broadcast Data Reveals Your Identity and Social Graph
Data analysis: LDAP

- LDAP server of the university is accessible from within the network
- Crawl all entries: >8,400 users
 - Login, first and last name
 - Department
 - Course of study
 - Status (student, professor, staff, ...)
 - Date of last password change
- 4,564 unique last names
- 1,300 unique first names
- Compare them to the hostnames
Data analysis: LDAP

- 2,900 first names matched
 - ~17% (500) match uniquely
- 929 last names matched
 - ~50% (464) match uniquely
- 293 full names matched
 - ~90% (263) match uniquely

How Broadcast Data Reveals Your Identity and Social Graph
Combining the data

- Add LDAP users to nodes
- Several users could be identified
 - Same course of studies
 - Same date for last password changed
- Those help to identify nodes with multiple LDAP matches
Data verification

- We made some surprise visits to lectures
 - Controlled experiment
 - Voluntarily data verification

- Other things to do
 - Look for social network profiles
 - Crawl the timetables of the university and match online times of the community
Countermeasures

- Don’t name your device after yourself\(^1\)
 - Not even if it is a common nickname
- Restrict publicly visible data in your online profiles
- Switch off broadcast/multicast functionalities
 - Don’t actually do this
 - Broadcast and multicast protocols are important
- Be careful when designing broadcast protocols
 - IETF draft: Privacy considerations for IP broadcast and multicast protocol designers\(^2\)

\(^1\)https://tools.ietf.org/html/rfc8117
\(^2\)https://datatracker.ietf.org/doc/draft-intarea-broadcast-consider/
Conclusion

- Personal information can be learned from broadcasts
- No protocol alone is to blame
- Check with a lawyer before doing anything like this
 - Note: criminals might not care about privacy
- Countermeasures are available and easy
 - But need a change in user behaviour