TCP ECN Experience with enabling ECN on the Internet

Padma Bhooma Apple

Using ECN from client side

- Apple enabled negotiation of TCP ECN (RFC 3168) from the client-side for the first time on iOS and macOS!
- TCP ECN negotiation is enabled on
 - 5% of randomly selected connections over Wi-Fi / Ethernet in iOS 9 and macOS El Capitan
 - 50% of randomly selected connections over Wi-Fi / Ethernet and a few cellular carriers in iOS 10 and macOS Sierra

ECN Benefits

- Reduce packet loss in the Internet
- Promote Smart Queue Management
- Reduce Buffer bloat
- Improve user experience
- Reference: draft-ietf-aqm-ecn-benefits-08

Good News!

- It works!
 - No problems reported from customers after using ECN on 50% of randomly selected TCP connections on all Apple devices

Heuristics for detecting broken middle boxes

- Middle boxes could treat ECN enabled SYN or data packets differently
- Apple devices have a few heuristics to detect these anomalies
- As a fallback, devices avoid using ECN on those network attachment (path) for a limited period of time after detecting an anomaly

CE marking on every packet

- Impact: Performance degradation
- Heuristic is triggered when:
 - CE marking is seen on Non-ECN connections
 - 7 out of 10 initial packets are marked with CE on ECN enabled connections
- Frequency
 - Fixed on the ISP where it was reported initially in Germany
 - Not seen on any other ISP in the world

Packet Reordering

- Impact: Performance degradation
- Heuristic is triggered when:
 - PAWS drop (RFC 7323) is seen due to reordering
 - Reordering is detected using TCP Selective acknowledgements

TCP SYN loss

- Impact: Adds another RTO during connection establishment
- Heuristic is triggered when:
 - More than 2 successive ECN negotiating SYNs are lost
- ECN is disabled conservatively even if the SYN loss is due to other reasons

RST on first data packet

- Impact: Connection dropped
- Heuristic is triggered when:
 - More than 2 consecutive connections receive a RST for the first data packet after successfully establishing an ECN connection
- Frequency: Seen rarely, still need a metric to quantify the impact

Connection drop after multiple retransmissions

- Impact: Connection failed
- Heuristic is triggered when:
 - More than 4 successively established ECN enabled connections fail to send data after multiple retransmissions
- Frequency: Seen rarely, still need a metric to quantify the impact

More about the heuristics

- Heuristics disable ECN conservatively for limited time even if the underlying problem is not due to ECN marking
- Heuristics are triggered rarely from the data collected so far
- Later, we plan to remove all these temporary heuristics and stop trying to accommodate the few remaining defective middle boxes that mishandle the ECN bits

Networks with CE marking

 Percentage of reports that have seen any CE marking on any of the ECN enabled connections in a 12 hour period

Country	Percentage
United States	0.2
China	1
Mexico	3.2
France	6
Argentine Republic	30

Marking was mainly seen on the uplink

Performance comparison between ECN and Non ECN connections

- Path characteristics measured over 12 hour period
 - RTT average and variance
 - Percentage of out-of-order bytes
 - Percentage of packet retransmissions
 - Connection drops
 - Percentage of reordered packets

- Every device reports these path characteristics seen on ECN and Non-ECN connections as two separate metrics during a period of 12 hours
- Our goal is to see that ECN connections perform no worse than Non-ECN connections
 - Makes it safe for Apple to continue using ECN
 - Offers clear competitive advantage for ISPs that do Smart queueing with support for ECN

Using Heat maps for data analysis

- Generating Heat maps with ECNOn metric on Yaxis and ECNOff metric on X-axis
- Each cell has a count of the number of reports that fall into that (ECNOff, ECNOn) values as (X,Y) co-ordinates
- Each cell is color-coded using the count of records on that cell

ECN Off Out of order byte percentage

ECN On Out of order byte percentage

Color to report count mapping

White	<= 0
Dark Red	1 - 105
Light Red	106 - 1,000
Yellow	1,001 - 10,000
Light Green	10,001 - 100,000
Med Green	100,001 - 500,000
Green	500,001 - 1,000,000
Dark Green	1,000,001 - 10,000,000
Light Blue	10,000,001 - 20,000,000
Med Blue	20,000,001 - 50,000,000
Dark Blue	50,000,001 - 152,660,669

Comparison of Out-of-order byte percentage

- 3 Billion reports from the field were used for this data representation
- Maximum heat is around 0 2 percentage
- Report count (heat) is distributed evenly or symmetrically along the diagonal for 0-100 percentage points
- Indicates that the percentage of out-of-order bytes is not worse for ECN connections than it is for Non-ECN connections

Comparison of Round Trip Time

- 3 billion reports from the field were used for this representation
- Maximum heat is around 40 50 ms
- Again, there is symmetric distribution of report counts (heat) along the diagonal for different values of RTT
- Indicates that average RTT is not any worse for ECN connections because of ECN marking

Summary

- ECN negotiation is enabled on 50% of TCP connections on all Apple devices on Wi-Fi and ethernet interfaces
- No problems reported from the customers
- Observed increasing adoption
- Now is the time for deploying SQM with ECN marking in the network and enabling ECN negotiation on all servers