You can -j REJECT but you can not hide:
Global scanning of the IPv6 Internet

Mar, 28th 2017
Tobias Fiebig
Technische Universität Berlin
Kevin Borgolte, Shuang Hao, Christopher Kruegel, Giovanni Vigna
UC Santa Barbara
Peeking at IPv6 addresses

• How can we observe IPv6 deployment?

• Several works investigate how IPv6 assignment works using large (semi/non public) datasets:
 – Foremski/Plonka/Berger: A large CDN's access logs
 – Czyz et al.: Various DNS data-sources
 – Gasser et al.: A large European IXP

• Existing techniques may miss servers and require vantage points.
Credits

• Was poked to look at this by Peter van Dijk at the last IETF in Berlin
• He is dutch, and I heard dutch people are good with DNS... so I trusted him when he suggested to look at DNS for finding IPv6 addresses.
Recap: v6 & Reverse DNS

- 128 bit, 32 so called nibbles
- Reverse DNS
 - Map IP->FQDN
 - domain: ip6.arpa.
 - One DNS tree level per nibble:

```
```
Recap: v6 & Reverse DNS

- 128bit, 32 so called nibbles
- Reverse DNS
 - Map IP->FQDN
 - domain: ip6.arpa.
 - One DNS tree level per nibble:

Recap: v6 & Reverse DNS

- 128bit, 32 so called nibbles

- Reverse DNS
 - Map IP->FQDN
 - domain: ip6.arpa.
 - One DNS tree level per nibble:

```
```
Recap: v6 & Reverse DNS

- 128bit, 32 so called nibbles
- Reverse DNS
 - Map IP->FQDN
 - domain: ip6.arpa.
 - One DNS tree level per nibble:

```
7.0.0.0.6.0.0.0.5.0.0.0.4.0.0.0.3.0.0.0.2.0.0.0.1.0.0.0.1.0.0.0.2.ip6.arpa.
```
Basic Technology

- Technically (RFC1034, clarified in RFC8020) NXDOMAIN means “there is nothing here or anywhere thereunder in the tree”.
- So we only enter branches, if we get a NOERROR
Basic Technology

• In itself not new:
 • RFC7707 (IPv6 discovery techniques) explicitly mentions this technique and Peter van Dijk's blog article
 • Van Dijk himself found some even earlier works: http://7bits.nl/blog/posts/ip6-arpa-prior-art-and-results
 • There is even a brief python implementation by him, which I used as a starting ground: https://github.com/habbie/ip6-arpa-scan/
Breadth (a little) first

• Lets split up the zones:

 Example address:
 • -> 7.0.0.0.6.0.0.0.5.0.0.0.4.0.0.0.3.0.0.0.2.0.0.0.1.0.0.0.1.0.0.2.ip6.arpa.

• Start at ip6.arpa.
• Enumerate to a depth of 16bits (4 nibbles)
• for each results (e.g. 1.0.0.2.ip6.arpa., 4.a.0.2.ip6.arpa.):
 Enumerate to a depth of 16bits more
• Rinse and repeat until you hit 128bit
 (optionally, go directly from 64bit to 128bit)
Detecting Auto-Gen Zones

• Before each step (e.g. with the previously enumerated /64's):
 • Check for i in {0..f} if
 f.f.f.f.f.f.f.f.f.f.f.f.f.f.f.f.3.0.0.0.1.0.0.0.1.0.0.2.ip6.arpa.
 e.e.e.e.e.e.e.e.e.e.e.e.e.e.e.e.3.0.0.0.2.0.0.0.1.0.0.0.1.0.0.2.ip6.arpa.
 ...
 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.3.0.0.0.2.0.0.0.1.0.0.0.1.0.0.2.ip6.arpa.
 • exit
• If at least three (personal preference) exist, the zone is not enumerated
• Ideally go for four-nibble steps, and do an auto-gen check at every step!
Non RFC8020 Compliance

- Servers that sent NXDOMAIN instead of NOERROR for non-existing nodes with children:
Non RFC8020 Compliance

• Solution: Seeding, using an aggregated BGP view

• Algorithm:
 • In: 2001:1:2:3::/64 as seed from BGP
 • Out:
 - 3.0.0.0.2.0.0.1.0.0.1.0.0.2.ip6.arpa.
 - 2.0.0.0.1.0.0.1.0.0.2.ip6.arpa.
 - 1.0.0.0.1.0.0.2.ip6.arpa.
 - 1.0.0.2.ip6.arpa.

• Other possible sources:
 • Czyz et al.'s PTRv4 -> AAAA lookups
 • All v6 Datasets you can get your hands on!
First insights...

You can -j REJECT but you can not hide!
My little SaaS provider (i)

You can -j REJECT but you can not hide!
You can -j REJECT but you can not hide!

Zoomed topology
Mitigation

- Simon Arlott suggests using wildcard RRs
 - He wrote a tool: https://github.com/lp0/ip6walk
- By then (2012) only applicable to ldns (1.6.12) NSD (3.2.10), according to van Dijk
- But the concept should be clear...
Conclusion

• You can \texttt{-j REJECT} but you can not hide ;-)

• Toolchain: \url{https://gitlab.inet.tu-berlin.de/ptr6scan/toolchain}
 (beware: Academic code... like startup code, but we do not call it production ready...)

• Publication:

• Full-length talk:
 \url{https://media.ccc.de/v/33c3-8061-you_can_-j_reject_but_you_can_not_hide_global_scanning_of_the_ipv6_internet}