
NETCONF	and	RESTCONF
Client/Server	Models

NETCONF	WG
IETF	98	(Chicago)

Drafts	covered:
• draft-ietf-netconf-keystore-01
• draft-ietf-netconf-ssh-client-server-02	
• draft-ietf-netconf-tls-client-server-02
• draft-ietf-netconf-netconf-client-server-02	
• draft-ietf-netconf-restconf-client-server-02

Recap
• In	the	IETF	97	(Seoul),	we	reported	little	progress	on	any	of	the	

drafts.

• The	only	real	change	made	to	the	drafts then	was	to	address	the	
keystore-renaming	issue.

• But	we	had	said	that,	with	zerotouch winding	down,	that	the	
expectation	was	that	these	drafts	would	start	to	get	more	
attention.

2

Updates	since	IETF	97
• While	zerotouch did	NOT	wind	down	as	expected,	these	drafts	still	got	a	fair	

amount	of	attention.

• Keystore:
– Replaced	cert-chain	idiom	with	PKCS#7	structures
– Added	'private-key'	as	a	configurable	data	node,	and	removed	the	'generate-

private-key'	and	'load-private-key'	actions.
– Moved	'user-auth-credentials'	to	the	ietf-ssh-client	module.

• SSH	Client/Server
– removed	transport-specific	grouping	(module	only	defines	one	grouping	now)
– Simplified	the	"client-auth"	part	in	the	ietf-ssh-client	module.	It	now	inlines what	

it	used	to	point	to	keystore for.
– Added	cipher	suites	for	various	SSH-specific	algorithms.

• TLS	Client/Server
– removed	transport-specific	grouping	(module	only	defines	one	grouping	now)
– Filled	in	previously	incomplete	'ietf-tls-client'	module.
– Added	cipher	suites	for	various	TLS-specific	algorithms

3

Updates	since	IETF	97 (cont.)
• NETCONF	Client/Server

– Added	to	ietf-netconf-client	ability	to	connected	to	a	cluster	of	endpoints,	
including	a	reconnection-strategy.

– Added	to	ietf-netconf-client	the	ability	to	configure	connection- type	and	also	
keep-alive	strategy.

– Updated	both	modules	to	accommodate	new	groupings	in	the	ssh/tls drafts.

• RESTCONF	Client/Server
– Filled	in	previously	missing	'ietf-restconf-client'	module.
– Updated	the	ietf-restconf-server	module	to	accommodate	new	grouping	'ietf-tls-

server-grouping’

• Other	drafts	are	planning	to	use	these	models:
– draft-ietf-netmod-syslog-model
– draft-ietf-pce-pcep-yang

4

Open	Issues
• Keystore:

– Should	‘private	key’	be	a	union?
– Add	back	`generate-private-key`	action?

• SSH	Client/Server:
– Simplified	client-auth okay	for	call-home	apps?

• TLS	Client/Server:
– Simplified	client-auth okay	for	call-home	apps?

• NETCONF	Client/Server:
– Should	NETCONF-client	be	a	grouping?

• RESTCONF	Client/Server:
– Should	RESTCONF-client	be	a	grouping?

5

Same	Issue

Same	Issue

Should	‘private-key’	be	a	union?

6

leaf private-key {
nacm:default-deny-all;
type union {
type binary;
type enumeration {
enum "RESTRICTED" {
description
"The private key is restricted due to access-control.";

}
enum "INACCESSIBLE" {
description
"The private key is inaccessible due to being protected
by the cryptographic hardware modules (e.g., a TPM).";

}
}

}
mandatory true;
description
"A binary string that contains the value of the private
key. The interpretation of the content is defined in the
registration of the key algorithm. For example, a DSA key
is an INTEGER, an RSA key is represented as RSAPrivateKey
as defined in [RFC3447], and an Elliptic Curve Cryptography
(ECC) key is represented as ECPrivateKey as defined in
[RFC5915]";

}

What	should	be	the	treatment	for	when	NACM	hides	a	value,	resulting	in	an	invalid	response?

Add	back	`generate-private-key`	action?

This	action	was	removed	when	we	added	‘private-key’,	protected	by	
“nacm:default-deny-all”	(see	previous	slide).

But:
1. It	is	still	best	practice	to	have	a	device	generate	the	private	key

• so	it	never	leaves	the	device)
2. The	private	key	needs	to	be	generated	in	hardware	sometimes

• no	option	to	set	via	configuration

My	plan	is	a	add	this	action	statement	back,	with	the	explanation	that	
it	only	updates	the	“operational”	datastore,	so	that	certificates	can	be	
configured	on	top	of	these	system-generated	private	keys.

Any	concerns?

7

Simplified	client-auth okay	for	call-home	apps?

• Works	great	for	traditional	clients,	and	also	for	call-home	apps	that	
want	to	use	the	same	client-auth for	ALL devices.

• For	more	complicated	call-home	apps,	is	it	okay	to	assume	that	the	
app	would	use	business	logic	to	handle	special	client-auth logic?

8

module: ietf-ssh-client
groupings:
ssh-client-grouping

+---- server-auth
| ...
+---- client-auth
| +---- username? string
| +---- (auth-type)?
| +--:(certificate)
| | +---- certificate? leafref {sshcom:ssh-x509-certs}?
| +--:(public-key)
| | +---- public-key? -> /ks:keystore/keys/key/name
| +--:(password)
| +---- password? union

The	SSH-client	grouping	is	presented	
here.		A	similar	single-client	construct	
exists	in	the	TLS-client	grouping	as	well.

Configures	just	a	single	client.

Should	NC/RC-client	be	a	grouping?

• Having	configuration	for	NC/RC-servers	makes	sense
– since	the	server's	backend	MUST	implement	the	modules	it	claims	to	

support.

• But	clients	are	different
– A	client	must	have	business	logic	of	some	sort	to	do	something.		

Specifically,	an	NC/RC	client	needs	to	be	linked	into	an	application that	
orchestrates	its	function.

• That	being	the	case,	how	can	a	client	ever	be	configured	on	its	own?		
– Shouldn't	the	application	itself	be	the	thing	that	is	configured?	

• Should	these	client	models	be	groupings	instead	of	a	containers?

9

Next	Steps

• Work	through	remaining	issues
• Complete	Call	Home	reference	implementation

– exercises	ietf-ssh-server	call-home	configuration

• Wait	for	other	implementations
– Syslog?
– PCE-PCEP?

• Then	Last	Call

Questions,	Comments,	Concerns?

10

