

The Self-Driving Network[™]: How to Realize It Kireeti Kompella, CTO, Engineering

The Self-Driving Network[™]

In March 2016, I presented the vision of a Self-Driving Network – an automated, fully autonomous network

I drew an analogy with the vision of a self-driving car
➢ It took 10 years from vision to prototype
➢ The first attempt (in 2004) failed!

What will it take to realize the Self-Driving Network?

The Self-Driving Car Journey

C3(15

2014

Google

2004

DARPA Grand Challenge: build a self-driving car

The Self-Driving Network: What It Does

A self-driving network would

Accept "guidance" from a network operator Self-discover its constituent parts Self-organize and self-configure Self-monitor using probes and other techniques Auto-detect and auto-enable new customers Automatically monitor and update service delivery Self-diagnose using machine learning and self-heal **Self-report periodically**

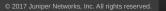
FIVE TECHNOLOGIES FOR SELF DRIVING

1. TELEMETRY

- 2. MULTIDIMENSIONAL VIEWS
- 3. AUTOMATION

4. DECLARATIVE INTENT

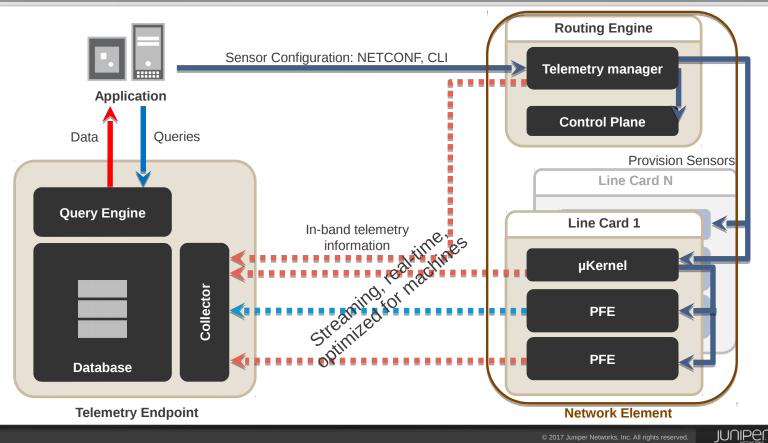
5. DECISION MAKING


- A. RULE-BASED
- **B. MACHINE LEARNING**

JUNIPE

1. TELEMETRY—CARS

The usual: speedometer, gas gauge, tire pressure sensors More recent: radar (for ACC), sonar (for parking assist), cameras


A laser sensor scans — 360 degrees around the vehicle for objects.

LIDAR

1. TELEMETRY—NETWORKS: where we are today

2. MULTIDIMENSIONAL, MULTI-MODAL VIEWS

NETWORK TODAY


- Neighbors, links
- Exit points, peers
- L0-1 devices
- Middle-boxes
- Global topology, traffic, flows
- Server and application performance
- Hackers, flash crowds, DDoS

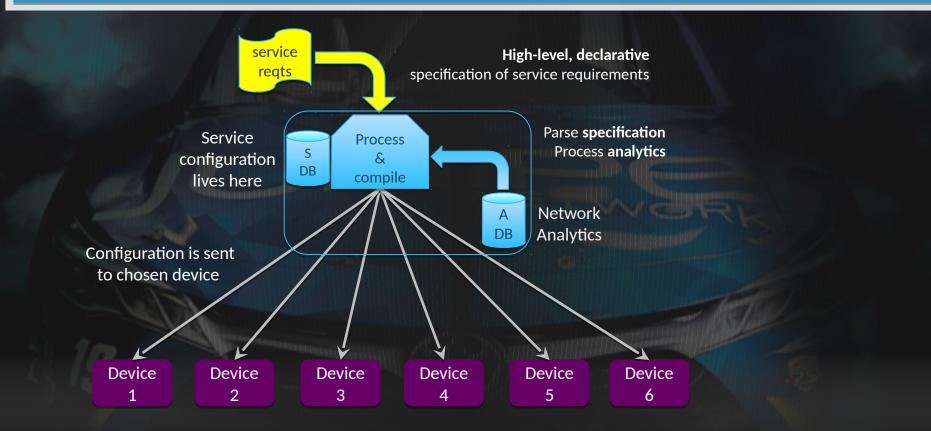
NETWORK (FUTURE)

- Correlation of information across geographies, layers, peers, clouds
- Root cause analysis via supervised learning
- Time-based trending to establish and adapt baselines
- Optimal local decisions based on global state

3. AUTOMATION—NETWORKS: where we are today

4. DECLARATIVE STATEMENT OF INTENT—CARS

SAY WHERE YOU WANT TO GO... Hints:


- Fastest time
- Lease distance
- Most efficient use of battery

Even better, the car can simply talk to your phone, figure out where you need to be, and take you there

4. INTENT: "Say What You Want, Not How" – where we are today

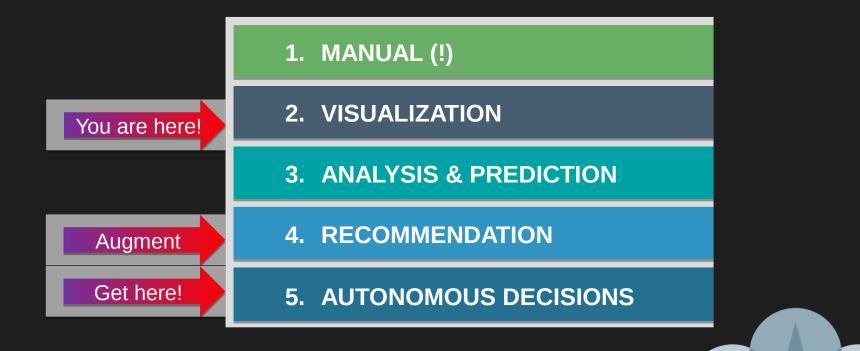
5. DECISION MAKING—RULE-BASED VS. MACHINE LEARNING

RULE-BASED LEARNING

If X happens, do Y: "avoid big rocks" —"If this then that"

+Straightforward programming +Easy to predict and refine

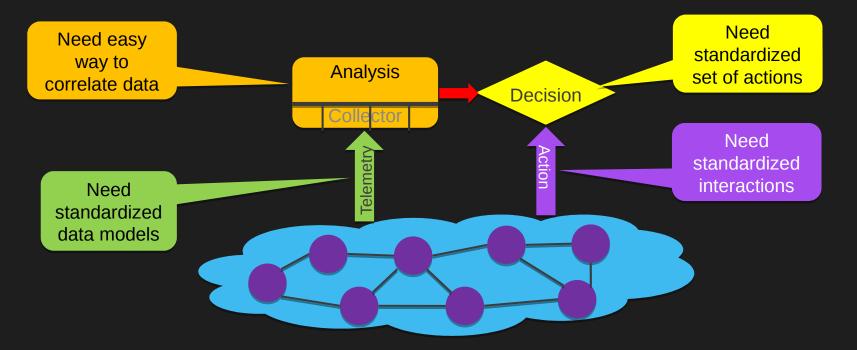
- Slow, painstaking work
- At scale, hard to manage


MACHINE LEARNING

"Essence of artificial intelligence" —Alan Turing

- +Can become "creative"
- +Fastest way to learn complex behavior
- Can come to strange conclusions
- Hard to know what it knows

FIVE STAGES OF SELF-DRIVING



IUNIPE

How Do We Get This Kicked Off?

HIGH-LEVEL ARCHITECTURE

THE NETWORKING GRAND CHALLENGE

BUILD A SELF-DRIVING NETWORK

GOAL

 Self-Discover—Self-Configure—Self-Monitor—Self-Correct—Auto-Detect Customers—Auto-Provision—Self-Analyze—Self-Optimize—Self-Report

PRIZE

• TBD

RESULT

- Free up people to work at a higher-level: new service design
- Agile, even anticipatory service creation
- · Fast, intelligent response to security breaches

CHALLENGE

• Run a datacenter for six months with no human intervention (not even from afar) with no reduction or compromise in functionality

POSSIBILITIES

IMPACT:

JUNIPE

THE SELF-DRIVING NETWORK: GRAND IMPACT

Skill set change: 1. Network geeks _ service designers 2. Network knowhow _ algorithmic tweaking The network gets out of the way! • SLAs are automatically met Networks adapt, react, anticipate Security becomes Good Guy 'Bot versus Bad Guy 'Bot

THE SELF-DRIVING NETWORK: GRAND POSSIBILITIES

LEVIS STADUMI

Super Bowl LX in 10 years

IT infrastructure orders and delivers itself, then self-organizes on-site

CONCLUSION

We have before us a compelling vision in networking, both meaningful and realizable

- Economic imperative: attack the biggest cost in networking – operations
- Efficiency imperative: spin up resources as needed and optimize their use
- Agility imperative: bring up new services quickly; predict, anticipate and adapt
- Security imperative: quickly diagnose, isolate and remove or mitigate threats

... and do this all with no human intervention

Let's get to work: study, share data, research, prototype, standardize, iterate