saag@IETF'98
Chicago, March 2017

draft-goldbe-vrf-00
Verifiable Random Functions (VRF)

Sharon Goldberg (Boston University)
Dimitrios Papadopoulos (University of Maryland)
Jan Vcelak (ns1)

Contributors: Leonid Reyzin (Boston University), Shumon Huque (Salesforce),
David C. Lawrence (Akamai), Moni Naor & Asaf Ziv (Weizmann Institute)

hash function zoo

hash function: SHA256
* nokey BLAKE
* hash =H(input)

 Verify: Check hash = H(input)
pseudorandom function: HMAC

* symmetric key
* hash =H(k, input)
 Verify: Cannot without

verifiable random function (VRF):

* asymmetric key (5K, PK)
* hash = VRF_hash(S¥, input)
* Verify: Use

VRF: verifiable random function

Verifier P Hasher &7
[iiiiii1 input
If verify (P¥, input, proof) proof proof = prove(SK, input)

hash = proof2hash(proof)
Else INVALID

VRF security: trusted uniqueness

Verifier P Hasher
[iiiiii1 input
If verify (P¥, input, proof) proof progf = prove(SK, input)

hash = proof2hash(proof)

Like a deterministic

Else INVALID digital signature
Like a regular hash

function (eg SHA256)

1-to-1 relationship between input and hash. (As with SHA-256!)

VRF security: trusted uniqueness

Verifier Hasher
If verify (P¥, input, proof) proof progf = prove(SK, input)
hash = proof2hash(proof) Like a deterministic
Else INVALID digital signature

Like a regular hash
function (eg SHA256)

1-to-1 relationship between input and hash. (As with SHA-256!)

Trusted uniqueness:

Suppose the VRF keys () are generated in a trusted way.

« If Piis fixed, then even an adversary that knows SK can't find
e ...two distinct VRF hash values that are valid for same input

VRF security: trusted collision resistance

Verifier P Hasher
[iiiiii1 input
If verify (P¥, input, proof) proof progf = prove(SK, input)

hash = proof2hash(proof)

Like a deterministic

Else INVALID digital signature
Like a regular hash

function (eg SHA256)

Collision resistance. (As with SHA-256!)

VRF security: trusted collision resistance

Verifier Hasher
[iiifii1 input
If verify (P¥, input, proof) proof progf = prove(SK, input)
hash = proof2hash(proof)

Like a deterministic
digital signature

Else INVALID

Like a regular hash
function (eg SHA256)

Collision resistance. (As with SHA-256!)

Trusted collision resistance:

Suppose the VRF keys () are generated in a trusted way.

« If Piis fixed, then even an adversary that knows SK can't find
e ...two distinct inputs that have the same valid VRF hash

VRF security: pseudorandomness
Verifier I Hasher &

proof = prove (SK, input)

I have no idea what hash = proof2hash(proof)
input this hash hash

corresponds to.

Only the Hasher can compute the hash. (No dictionary attacks!)

VRF security: pseudorandomness
Verifier Hasher

proof = prove (SK, input)

I have no idea what hash = proof2hash(proof)
input this hash hash

corresponds to.

Only the Hasher can compute the hash. (No dictionary attacks!)

Pseudorandomness:

Suppose the VRF keys () are generated in a trusted way.
e Given an input, its VRF hash output looks pseudorandom
e ...toany adversary that does not know its proof or

VRFs stop dictionary attacks on hash-based structures

Verifier P Hasher =7 Build out of

VRF hashes

V

AR

Hash-based data
structure

o

VRFs stop dictionary attacks on hash-based structures

Verifier PV Hasher S Build out of

VRF hashes

A e

Hash-based data Hash-based data
structure structure

VRFs stop dictionary attacks on hash-based structures

Verifier

Hash-based data
structure

Hasher

| can’t use dictionary attacks
to learn what is stored in this
data structure.

Build out of
VRF hashes

V

Hash-based data
structure

VRFs stop dictionary attacks on hash-based structures

Verifier Hasher Build out of
VRF hashes

V

Hash-based data
structure

Hash-based data

| can’t use dictionary attacks
structure

to learn what is stored in this
data structure.

Is input in the

data structure? Input

oroof proof = prove (S¥, input)

If verify (P, input, proof)
hash = proof2hash(proof)

VRFs stop dictionary attacks on hash-based structures

Verifier

m@

Hash-based data
structure

Is input in the

data structure? Input

proof

If verify (P, input, proof)
hash = proof2hash(proof)
Is hash in data structure?

Else INVALID

Hasher Build out of
VRF hashes

V

AR

Hash-based data
structure

proof = prove (S¥, input)

VRFs stop dictionary attacks on hash-based structures

Verifier

m@

Hash-based data
structure

Is input in the
data structure?

If verify (P, input, proof)
hash = proof2hash(proof)
Is hash in data structure?

Else INVALID

| can't lie about
the hash output

input

proof

Hasher Build out of
VRF hashes

V

AR

Hash-based data
structure

proof = prove (S¥, input)

-00 draft includes

VRF Security Definitions and Security Considerations

Elliptic Curve VRF (EC-VRF)
— Works with any cyclic group G of prime order q with generator g
— Ciphersuites for NIST P-256 curve and Ed25519 curve
— Algorithm is generic. Could support other curves

RSA Full-Domain-Hash VRF (RSA-FDH-VRF)

Also, we have:
— Formal cryptographic security proofs: http://ia.cr/2017/099
— Implementations: https://github.com/fcelda/nsec5-crypto

RSA-FDH-VRF (RSA full domain hash VRF)

Verifier (1,) Hasher (1, ¢
proof =
proof (MGF1(input))d mod N
deterministic [RFC8017]

RSA signature

RSA-FDH-VRF (RSA full domain hash VRF)

Verifier Hasher
RSA signature proof =
verification proof (MGF1(input))4 mod N

If MGF1(input) = (proof)d mod N \
deterministic [RFC8017]

RSA signature

RSA-FDH-VRF (RSA full domain hash VRF)

Verifier Hasher
RSA signature proof =
verification proof (MGF1(input))4 mod N

If MGF1(input) = (proof)d mod N \
deterministic [RFC8017]
hash = H(proof)

RSA signature
Else INVALID X

regular hash function
(eg SHA256)

EC-VREF (elliptic curve VRF)

Verifier o Hasher

Cyclic group G of
prime order q
with generator g
(eg Ed25519)

EC-VREF (elliptic curve VRF)

Verifier Hasher

input

Cyclic group G of h =hash_to_curve (input)
prime order q

v=h*
with generator g regular hash function
(eg Ed25519) (eg SHA256) choose random nonce k

c=H(g, g% h, h*, gk hk)
s =k-cxmodq

EC-VREF (elliptic curve VRF)

Verifier Hasher

input

Cyclic group G of h =hash_to_curve (input)
prime order q

v=h*
with generator g regular hash function
(eg Ed25519) (eg SHA256) choose random nonce k

c=H(g, g% h, h*, gk hk)
proof:(y, ¢, s) s =k-cxmod g

EC-VREF (elliptic curve VRF)

Verifier

input

Cyclic group G of

prime order q
with generator g regular hash function
(eg Ed25519) (eg SHA256)

u=(g)g

h = hash_to_curve (input)

v=y°hs

If c=H(g,9%, h,y, u,v)
hash = x-coordinate of y

Else INVALID

Hasher

h =hash_to_curve (input)

v=h*
@oose random nonce k

c=H(g, g% h, h*, gk hk)

proof:(y, ¢, s) s =k-cxmod g

EC-VREF (elliptic curve VRF)

Verifier Hasher

input

Cyclic group G of h =hash_to_curve (input)
prime order q

v=h*
with generator g regular hash function
(eg Ed25519) (eg SHA256) choose random nonce k

c=H(g, g% h, h*, gk hk)
proof:(y, ¢, s) s =k-cxmod g

u= (gX)C gS
h = hash_to_curve (input)

v=y°h* ciphersuites

If c=H(g,g* h,y, u,v) e NIST P-256 curve with SHA256
hash = x-coordinate ofv e Ed25519 curve with SHA256
Else INVALID * Could add other curves (eg Ed448)

