neot

TAPS-related topics from the NEAT project

Naeem Khademi
TAPS WG - IETF 98

Chicago- USA
28 March 2017

Introduction on NEAT

= NEAT project has been ongoing since March 2015

= NEAT library builds a TAPS-like prototype system
— Protocol- and platform-independent

— Open source, BSD Licensed (3 clause), implemented in C

— Currently supports FreeBSD, Linux (Ubuntu), Mac OSX, and NetBSD
- Event-based (using callbacks), libuv-based

— Most core components are in place but still work-in-progress

= The NEAT API was first presented - rescarcn sboratory)
at IETF 95 (Buenos Aires)

%UNIVERSITY
W oF ABERDEEN —= ®

= NEAT User API based on Emic:
draft-ietf-taps-transports-usage e |
CIsco Minster Uniy versity of
and NEAT internal use-cases o

neot ’

Key Features
= API properties
= NEAT Policy system

= Simpler/flexible coding with the NEAT User API

= Application feedback (Happy Apps)

neot 3

Application properties in NEAT

= NEAT gives users a chance to control as

much as they want, yet allow i,
A property_name": {

automatization value: "property_value",

precedence: 1
¥
= |t uses a key/value-based property system)

in JSON format

— They can have different types and metadata 1 " [
ran r 2

attached to them, e.g. precedence a{Spo

"value": "SCTP",

— can set multiple/all properties with one API "precedence”: 1

call ,
neat_set_property(ctx, flow, properties); { "walue": "TCP"
= Properties are given “precedence” -- e.g. . "precedence”: 1
1=desired; 2=required 1
}

1) Desired: try and fallback if unsuccessful
2) Required: fail if unsuccessful

neot .

Key Features

= API properties
= NEAT Policy system

= Simpler/flexible coding with the NEAT User API

= Application feedback (Happy Apps)

neot 5

NEAT Policy System (#1)

NEAT’s selection of protocols and parameterization is based on:
@ Configured policies (PIB lookup)
@ Tested capabilities (Happy Eyeballs)
@ Known and learned capabilities (CIB lookup)

1 (async access)
§ 1. Updated [|
CIL.) ¢ request Profiles
8 o properties
o &
§ % 2. Matched Policy Clhz:racter'ltlcs ’) <
- -2 -----H Information |-
S—> = CIB Information n oBrmatlon E
- 3 | candidates Base ase o
2 S
S - 3. Updated
:% <T Policies
< candidates O >
4. Ranked
candidates
Connection
Selection NEAT Policy components and their interactions

Connection handle

neot 6

NEAT Policy System (#2)

NEAT provides a flexible way for defining 1
policies; also allows for creation of profiles "name": "Low latency",
depending on the networking scenario "match”: {
"low_latency": {
"precedence": 1,
Policies: based on NEAT properties with ‘value™: true
priorities among themselves, in JSON format; 1 }
set by the user, system administrator or "|:,Jr'oper'ties": f
developer "interface_latency":
{
"precedence": 2,
Profiles: are policies applied before CIB lookup; "value": [0,40]
match (high-level) property in the request is b, "
replaced with the associated profile (low-level) thored {..,
: precedence": 1,
properties "value": true
. ¥
Policies and profiles are stored in Policy !

Information Base (PIB)

neot 7

An example of profile

Key Features

= API properties
= NEAT Policy system
= Simpler/flexible coding with the NEAT User API

= Application feedback (Happy Apps)

neot 8

Simpler/flexible coding with the NEAT User API

Built in NEAT: many common network programming tasks like address
resolution, buffer management, encryption, connection establishment
and handling

Address resolution and connection establishment with a single function
call

neat_open(ctx, flow, "bsdl@.fh-muenster.de", 80, NULL, 0);

Example #1: Establishing a listening socket (42 SLoC with NEAT APl vs 59
SLoC with socket API)

Example #2: we ported Nghttp2 (a HTTP/2 implementation) web server/
client and a few other smaller http/https-based clients to use NEAT
= |nteroperable with TCP

= Can benefit from using SCTP ~20% reduction in code lines

neot 9

Key Features

= API properties
= NEAT Policy system

= Simpler/flexible coding with the NEAT User API

= Application feedback (Happy Apps)

neot 10

Application feedback (Happy Apps) (#1)

Happy Apps: offers selection mechanisms when the underlying
transport protocol does not provide the signhals required -- e.g.
QoS fallback with UDP(-Lite)

Network QoS: often limited to controlled network environment
due to lack of high-level API

Key challenge: how to express service requirements, while still
enabling policy to influence choice and providing flexibility when
the network is unable to directly satisfy the requirements

With NEAT: can use user requirements, policy, and dynamic info
collected from other connections to drive an appropriate DSCP
code-point

neot u

Application feedback (Happy Apps) (#2)

Example: we developed neat-streamer based on Gstreamer
(pipeline-based media library for audio/video)

neat-streamer
GST NEAT User Module
§Video in | Decode C
T RTP 5
| Video out | Encode i B \ ______________
""""""""""""""""""" AR ’g‘ | § rfroscP=46ERn—K
! | L g2 neat-streamer peer
: L@ b8 -
Application code 5 . / g Bl DSCP =0 (BE) —]
Fesssssssscssssccemesssceseseseeeeene O HPV e L S|
' - ! z = 4
: icati | - > O
. Aplication | NeaTflow (S N
state | -

neot 12

Major updates since IETF 95 (#1)

= Multi-streaming: transparent use of SCTP multi-streaming
(compile-time option)

= Flow-level priority: APl support for flow group (local) priorities to
leverage:

— Coupled-CC with TCP based on draft-welzl-tcp-ccc-00
— Stream scheduling with SCTP (WiP)

= “transport protocol” HE mechanism: improvements in the code
— Including investigation of transport HE’s cost (presented in TAPS, IETF 96)
— Uses priorities among “candidate transport solutions” with a fixed delay
— NEAT transport-level HE is explained in draft-grinnemo-taps-he-02

neot 13

Major updates since IETF 95 (#2)

= Datagram support for the API (UDP, UDP-Lite)

= Support for SCTP, SCTP/UDP (both in kernel and userland)

= Server-side support (listening on multiple protocols)

* Multi-homing support (with STCP)

= Multipath support (with MPTCP) (unmerged)

= Security (TLS/TCP; DTLS/UDP and ongoing work on DTLS/SCTP)

" Lots of improvements, debuggings and coding optimizations!

neot 14

NEAT EU project: https://www.neat-project.org

Github Repository: https://github.com/NEAT-project/neat

APl documentation and tutorial: http://neat.readthedocs.io/en/latest
Also to appear in [IEEE Communications Magazine, June 2017

N. Khademi, D. Ros, M. Welzl, Z. Bozakov, A. Brunstrom, G. Fairhurst, K.-J. Grinnemo, D. Hayes, P. Hurtig, T. Jones, S.
Mangiante, M. Tlixen, and F. Weinrank. “NEAT: A Platform- and Protocol-Independent Internet Transport API”. |EEE

Communications Magazine, accepted for publication, March 2017.

Comments, feedback, patches, test results,
suggestions on target apps are welcome!

Q&A

neot 15

NEAT Workflow

1. Request to open flow & pass application requirements

C Application >
2. Query PM about feasible transport candidates based

/ k on destination domain name

1 10
{ \ 3. PM determines available transport candidates that fulfil
NEAT User API policy (PIB) and cached information (CIB)
| * 4. Return ranked list of feasible transport candidates as
1 10 pre-filter for address resolution
* | 5. Resolve addresses

Selection «—— 99— Framework /_\5
g 6. Query PM about feasible transport candidates for
| T | T | resolved destination address
2 4 6 8 11 : : S
7. PM builds candidates, assigning priorities based on
'''''''''''''''''''''''''''''''''' l}&{l PIB/CIB matches
—— 33— .
PIB [7 5 Policy Manager 8. Return ranked list of feasible transport candidates for

* * | flow establishment

9. Do Happy Eyeballs with candidates, according to
specified priorities

10. Return handle to selected transport solution

3 7 1

11. Cache results from Happy Eyeballs in the CIB

Source: N. Khademi, D. Ros, M. Welzl, Z. Bozakov, A. Brunstrom, G. Fairhurst, K.-J. Grinnemo,
D. Hayes, P. Hurtig, T. Jones, S. Mangiante, M. Tlxen, and F. Weinrank. “NEAT: A Platform-
and Protocol-Independent Internet Transport API”. IEEE Communications Magazine, accepted
for publication, March 2017.

neot 16

A Simple Client using the NEAT API (#1)

static char *properties =
"{\"transport\": {\"value\": \"reliable\", \"precedence\": 2}}";

int main(void) {
struct neat_ctx *ctx;
struct neat_flow *flow;
struct neat_flow_operations ops;

ctx = neat_init_ctx();

flow = neat_new_flow(ctx);

memset(&ops, 0, sizeof(ops));

ops.on_connected = on_connected;

heat_set_operations(ctx, flow, &ops);

neat_set_property(ctx, flow, properties);

neat_open(ctx, flow, "bsdl@.fh-muenster.de", 5000, NULL, 0);
neat_start_event_loop(ctx, NEAT_RUN_DEFAULT);
neat_free_ctx(ctx);

return EXIT_SUCCESS;

neot 17

A Simple Client using the NEAT API (#2)

static neat_error_code on_connected(struct neat_flow_operations *ops) {
ops->on_writable = on_writable;
ops->on_all_written = on_all_written;
neat_set_operations(ops->ctx, ops->flow, ops);
return NEAT_OK;

}

static neat_error_code on_writable(struct neat_flow_operations *ops) {
neat_write(ops->ctx, ops->flow, "Hi!", 3, NULL, ©@);
return NEAT_OK;

ks

static neat_error_code on_all_written(struct neat_flow_operations *ops) {
ops->on_readable = on_readable;
ops->on_writable = NULL;
neat_set_operations(ops->ctx, ops->flow, ops);
return NEAT_OK;

neot 18

A Simple Client using the NEAT API (#3)

static neat_error_code on_readable(struct neat_flow_operations *ops) {
uint32_t bytes_read = 0;
char buffer[32];

1f (neat_read(ops->ctx, ops->flow, buffer, 31,
&bytes_read, NULL, @) == NEAT_OK) {
buffer[bytes_read] = 0;
fprintf(stdout, "Read %u bytes:\n%s", bytes_read, buffer);
¥
neat_close(ops->ctx, ops->flow);
neat_stop_event_loop(ops->ctx);

return NEAT_OK;

neot 19

