
TAPS-related	topics	from	the	NEAT	project	

Naeem	Khademi	
TAPS	WG	-	IETF	98	

Chicago-	USA	
28	March	2017	

	

Introduc;on	on	NEAT	
§  NEAT	project	has	been	ongoing	since	March	2015	

	
§  NEAT	library	builds	a	TAPS-like	prototype	system		

-  Protocol-	and	plaLorm-independent			
-  Open	source,	BSD	Licensed	(3	clause),	implemented	in	C	
-  Currently	supports	FreeBSD,	Linux	(Ubuntu),	Mac	OSX,	and	NetBSD	
-  Event-based	(using	callbacks),	libuv-based	
-  Most	core	components	are	in	place	but	sXll	work-in-progress		

	
§  The	NEAT	API	was	first	presented	

at	IETF	95	(Buenos	Aires)	

§  NEAT	User	API	based	on	
dra[-ieL-taps-transports-usage		
and	NEAT	internal	use-cases	

2	

Key	Features	

§  API	proper;es		

§  NEAT	Policy	system	

§  Simpler/flexible	coding	with	the	NEAT	User	API	

§  ApplicaXon	feedback	(Happy	Apps)	

3	

Applica;on	proper;es	in	NEAT		
§  NEAT	gives	users	a	chance	to	control	as	

much	as	they	want,	yet	allow	
automa;za;on		

§  It	uses	a	key/value-based	property	system	
in	JSON	format		
–  They		can	have	different	types	and	metadata	

abached	to	them,	e.g.	precedence		
–  can	set	mulXple/all	properXes	with	one	API	

call	

§  ProperXes	are	given	“precedence”	--	e.g.	
1=desired;	2=required	
1)  Desired:	try	and	fallback	if	unsuccessful		
2)  Required:	fail	if	unsuccessful	

	

{
 "transport": [
 {
 "value": "SCTP",
 "precedence": 1
 },
 {
 "value": "TCP",
 "precedence": 1
 }
]
}

{
 "property_name": {
 value: "property_value",
 precedence: 1
 }
}

neat_set_property(ctx, flow, properties);

4	

Key	Features	

§  API	properXes		

§  NEAT	Policy	system	

§  Simpler/flexible	coding	with	the	NEAT	User	API	

§  ApplicaXon	feedback	(Happy	Apps)	

5	

NEAT	Policy	System	(#1)		

6	

Connection
Selection

(async access)

R
E
S
T
 A

P
I

Po
lic

y
 M

a
n

a
g
e
r

Profiles

Characteritics
Information

Base

A
p
p
lic

a
ti

o
n

re
q
u
e
st

 p
ro

p
e
rt

ie
s

2. Matched
CIB

candidates

1. Updated
request

properties

3. Updated
PIB

candidates

Policies

Connection handle

Policy
Information

Base

4. Ranked
candidates

NEAT	Policy	components	and	their	interacXons	

NEAT’s	selecXon	of	protocols	and	parameterizaXon	is	based	on:	
①  Configured	policies	(PIB	lookup)	
②  Tested	capabiliXes	(Happy	Eyeballs)	
③  Known	and	learned	capabiliXes	(CIB	lookup)	

NEAT	Policy	System	(#2)		
§  NEAT	provides	a	flexible	way	for	defining	

policies;	also	allows	for	crea;on	of	profiles	
depending	on	the	networking	scenario	

	
§  Policies:	based	on	NEAT	properXes	with	

prioriXes	among	themselves,	in	JSON	format;	
set	by	the	user,	system	administrator	or	
developer		

§  Profiles:	are	policies	applied	before	CIB	lookup;	
match	(high-level)	property	in	the	request	is	
replaced	with	the	associated	profile	(low-level)	
properXes	

§  Policies	and	profiles	are	stored	in	Policy	
InformaXon	Base	(PIB)		

{
 "name": "Low latency",
 "match": {
 "low_latency": {
 "precedence": 1,
 "value": true
 }
 },
 "properties": {
 "interface_latency":
{
 "precedence": 2,
 "value": [0,40]
 },
 "is_wired": {
 "precedence": 1,
 "value": true
 }
 }
}

An	example	of	profile	
7	

Key	Features	

§  API	properXes		

§  NEAT	Policy	system	

§  Simpler/flexible	coding	with	the	NEAT	User	API	

§  ApplicaXon	feedback	(Happy	Apps)	

8	

Simpler/flexible	coding	with	the	NEAT	User	API	
§  Built	in	NEAT:	many	common	network	programming	tasks	like	address	

resoluXon,	buffer	management,	encrypXon,	connecXon	establishment	
and	handling	

§  Address	resoluXon	and	connecXon	establishment	with	a	single	funcXon	
call		

§  Example	#1:	Establishing	a	listening	socket	(42	SLoC	with	NEAT	API	vs	59	
SLoC	with	socket	API)			

§  Example	#2:	we	ported	Nghbp2	(a	HTTP/2	implementaXon)	web	server/
client	and	a	few	other	smaller	hbp/hbps-based	clients	to	use	NEAT		
§  Interoperable	with	TCP		
§  Can	benefit	from	using	SCTP		

	

neat_open(ctx, flow, "bsd10.fh-muenster.de", 80, NULL, 0);

~20%	reduc;on	in	code	lines	

9	

Key	Features	

§  API	properXes		

§  NEAT	Policy	system	

§  Simpler/flexible	coding	with	the	NEAT	User	API	

§  Applica;on	feedback	(Happy	Apps)	

10	

Applica;on	feedback	(Happy	Apps)	(#1)	

§  Happy	Apps:	offers	selecXon	mechanisms	when	the	underlying	
transport	protocol	does	not	provide	the	signals	required	--	e.g.	
QoS	fallback	with	UDP(-Lite)	

§  Network	QoS:	o[en	limited	to	controlled	network	environment	
due	to	lack	of	high-level	API	

§  Key	challenge:	how	to	express	service	requirements,	while	sXll	
enabling	policy	to	influence	choice	and	providing	flexibility	when	
the	network	is	unable	to	directly	saXsfy	the	requirements	

§  	With	NEAT:	can	use	user	requirements,	policy,	and	dynamic	info	
collected	from	other	connecXons	to	drive	an	appropriate	DSCP	
code-point		

11	

Applica;on	feedback	(Happy	Apps)	(#2)	

Example:	we	developed	neat-streamer	based	on	Gstreamer	
(pipeline-based	media	library	for	audio/video)	
	

12	

Major	updates	since	IETF	95	(#1)	
	
§  Mul;-streaming:	transparent	use	of	SCTP	mulX-streaming	

(compile-Xme	opXon)	

§  Flow-level	priority:	API	support	for	flow	group	(local)	prioriXes	to	
leverage:		
-  Coupled-CC	with	TCP	based	on	dra[-welzl-tcp-ccc-00			
-  Stream	scheduling	with	SCTP	(WiP)		

		
§  “transport	protocol”	HE	mechanism:	improvements	in	the	code			

-  Including	invesXgaXon	of	transport	HE’s	cost	(presented	in	TAPS,	IETF	96)	
-  Uses	prioriXes	among	“candidate	transport	soluXons”	with	a	fixed	delay	
-  NEAT	transport-level	HE	is	explained	in	dra[-grinnemo-taps-he-02		

	
13	

Major	updates	since	IETF	95	(#2)	
§  Datagram	support	for	the	API	(UDP,	UDP-Lite)	

§  Support	for	SCTP,	SCTP/UDP	(both	in	kernel	and	userland)	

§  Server-side	support	(listening	on	mulXple	protocols)	

§  Mul;-homing	support	(with	STCP)	

§  Mul;path	support	(with	MPTCP)	(unmerged)	

§  Security	(TLS/TCP;	DTLS/UDP	and	ongoing	work	on	DTLS/SCTP)	

§  Lots	of	improvements,	debuggings	and	coding	opXmizaXons!	

	
14	

Q&A	

NEAT	EU	project:	hbps://www.neat-project.org			
Github	Repository:	hbps://github.com/NEAT-project/neat		
API	documenta;on	and	tutorial:	hbp://neat.readthedocs.io/en/latest	
Also	to	appear	in	IEEE	CommunicaXons	Magazine,	June	2017		
	

Comments,	feedback,	patches,	test	results,		
sugges?ons	on	target	apps	are	welcome!	

15	

	
N.	Khademi,	D.	Ros,	M.	Welzl,	Z.	Bozakov,	A.	Brunstrom,	G.	Fairhurst,	K.-J.	Grinnemo,	D.	Hayes,	P.	HurXg,	T.	Jones,	S.	
Mangiante,	M.	Tüxen,	and	F.	Weinrank.	“NEAT:	A	Pla+orm-	and	Protocol-Independent	Internet	Transport	API”.	IEEE	
CommunicaXons	Magazine,	accepted	for	publicaXon,	March	2017.	

NEAT	Workflow	
1. Request to open flow & pass application requirements

2. Query PM about feasible transport candidates based
on destination domain name

3. PM determines available transport candidates that fulfil
policy (PIB) and cached information (CIB)

4. Return ranked list of feasible transport candidates as
pre-filter for address resolution

5. Resolve addresses

6. Query PM about feasible transport candidates for
resolved destination address

7. PM builds candidates, assigning priorities based on
PIB/CIB matches

8. Return ranked list of feasible transport candidates for
flow establishment

9. Do Happy Eyeballs with candidates, according to
specified priorities

10. Return handle to selected transport solution

11. Cache results from Happy Eyeballs in the CIB

Policy

Application

NEAT User API

Policy Manager

CIB

PIB

FrameworkSelection

1

1

2

3

3

4

5

6

7

8

9

11

11

10

10

7

	
Source:	N.	Khademi,	D.	Ros,	M.	Welzl,	Z.	Bozakov,	A.	Brunstrom,	G.	Fairhurst,	K.-J.	Grinnemo,	
D.	Hayes,	P.	HurXg,	T.	Jones,	S.	Mangiante,	M.	Tüxen,	and	F.	Weinrank.	“NEAT:	A	PlaGorm-	
and	Protocol-Independent	Internet	Transport	API”.	IEEE	CommunicaXons	Magazine,	accepted	
for	publicaXon,	March	2017.	

16	

A	Simple	Client	using	the	NEAT	API	(#1)	
static char *properties =
"{\"transport\": {\"value\": \"reliable\", \"precedence\": 2}}";

int main(void) {
 struct neat_ctx *ctx;
 struct neat_flow *flow;
 struct neat_flow_operations ops;

 ctx = neat_init_ctx();
 flow = neat_new_flow(ctx);
 memset(&ops, 0, sizeof(ops));
 ops.on_connected = on_connected;
 neat_set_operations(ctx, flow, &ops);
 neat_set_property(ctx, flow, properties);
 neat_open(ctx, flow, "bsd10.fh-muenster.de", 5000, NULL, 0);
 neat_start_event_loop(ctx, NEAT_RUN_DEFAULT);
 neat_free_ctx(ctx);
 return EXIT_SUCCESS;
}

17	

A	Simple	Client	using	the	NEAT	API	(#2)	

static neat_error_code on_connected(struct neat_flow_operations *ops) {
 ops->on_writable = on_writable;
 ops->on_all_written = on_all_written;
 neat_set_operations(ops->ctx, ops->flow, ops);
 return NEAT_OK;
}

static neat_error_code on_writable(struct neat_flow_operations *ops) {
 neat_write(ops->ctx, ops->flow, "Hi!", 3, NULL, 0);
 return NEAT_OK;
}

static neat_error_code on_all_written(struct neat_flow_operations *ops) {
 ops->on_readable = on_readable;
 ops->on_writable = NULL;
 neat_set_operations(ops->ctx, ops->flow, ops);
 return NEAT_OK;
}

18	

A	Simple	Client	using	the	NEAT	API	(#3)	

static neat_error_code on_readable(struct neat_flow_operations *ops) {
 uint32_t bytes_read = 0;
 char buffer[32];

 if (neat_read(ops->ctx, ops->flow, buffer, 31,
 &bytes_read, NULL, 0) == NEAT_OK) {
 buffer[bytes_read] = 0;
 fprintf(stdout, "Read %u bytes:\n%s", bytes_read, buffer);
 }
 neat_close(ops->ctx, ops->flow);
 neat_stop_event_loop(ops->ctx);

 return NEAT_OK;
}

19	

