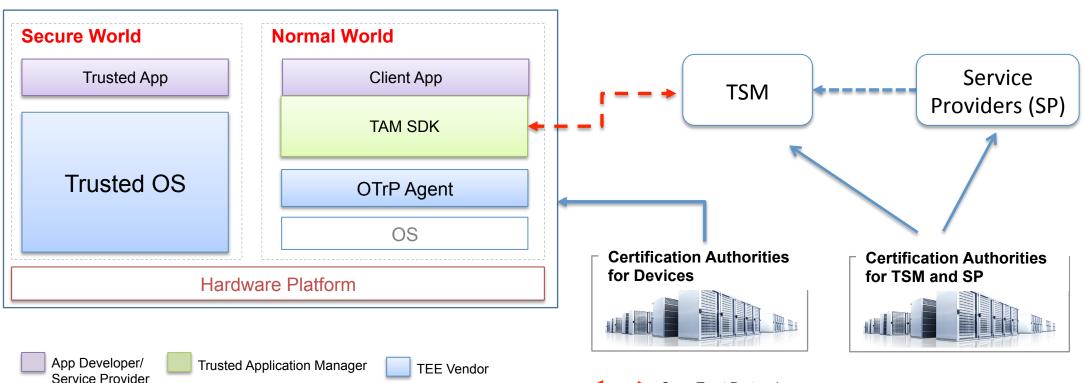

TEEP BOF Architecture

Mingliang Pei 28th March 2017 -- IETF 98th, Chicago

Ecosystem

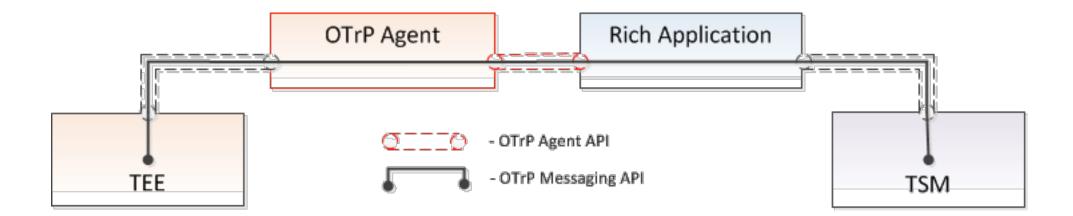


OTrP Design Choices

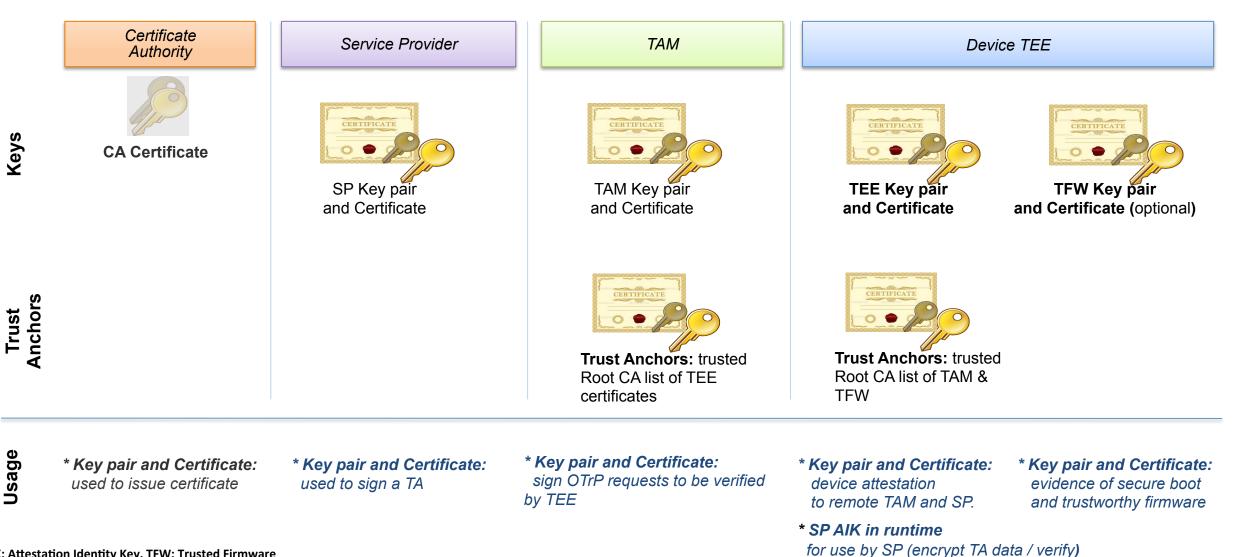
- Uses asymmetric keys and PKI
 - Manufacturer-provided keys and trust anchors
 - Enables attestation between TAM and TEE-device
- JSON-based messaging between TAM and TEE
 - Messages for attestation
 - Messages for security domain management and TA management
 - Use JOSE (JSON signing and encryption specifications) CBOR alternative spec available.
- OTrP Agent in REE relays message exchanges between a TAM and TEE
- Device has a single TEE only

Open Trust Protocol (OTrP) Overview

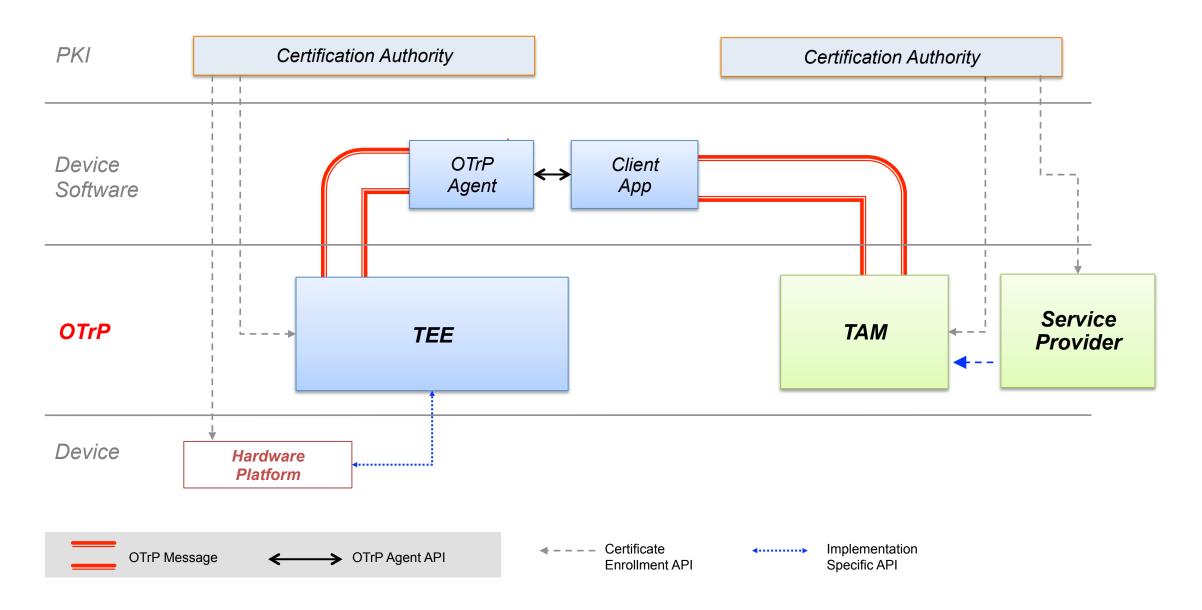
- CAs issue certificates to OTrP actors (TEE, TAM, SP)
- TAM and TEE exchange messages
- An OTrP Agent relays the OTrP message between TAM and TEE.
 - The communication between Rich App to TAM is up to SP and TAM.

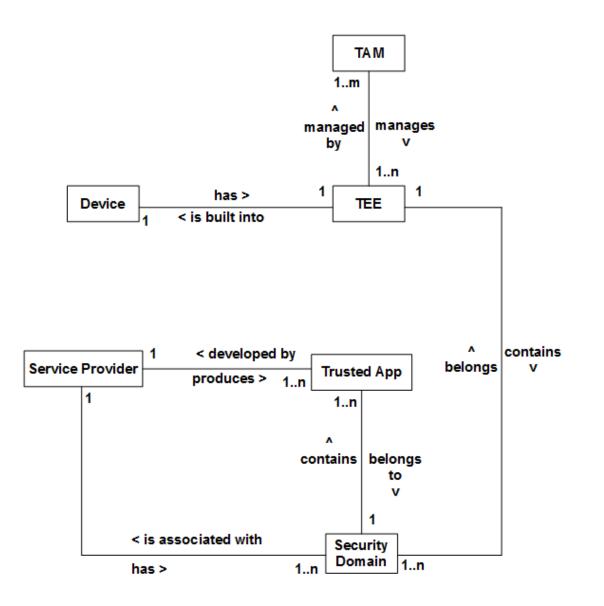


Open Trust Protocol


Device

OTrP Agent


- Responsible for routing OTrP Messages to the appropriate TEE
- Most commonly developed and distributed by TEE vendor
- Implements an interface as a service, SDK, etc.


Keys

Proposed Scope

Entity Relationships

Protocol Flow

- Security of the Operation Protocol is enhanced by applying the following three Measures:
 - ✓ Verifies validity of Message Sender's Certificate
 - ✓ Verifies signature of Message Sender to check immutability
 - ✓ Encrypted to guard against exposure of Sensitive data

TA	AM Clie	nt App TE	E
Phase#1 "Device Attestation" Operation request triggered and verify Device state information	Request to TSM for TA installation Send [GetDeviceState] to TEE Return DSI as a response to [GetDeviceState]		
Phase#2 Prerequisite operation (if Security domain doesn't exist where the TA should be installed)	Send [CreateSD]to create SD where the TA will be installed Send other prerequisite commands (if necessary)		✓ Create new SD
Phase#3 Perform Operation requested by SP or Client Application	Send [installTA] with encrypted TA binary and its data		 ✓ Decrypt TA binary and its personal data. ✓ Install TA into target SD. ✓ Store personal data in TA's private storage.

Discussion

Thank you!

APPENDIX

JSON Message Security and Crypto Algorithms

- Use JSON signing and encryption RFCs
 - RFC 7515, JSON Web Signature (JWS)
 - RFC 7516, JSON Web Encryption (JWE)
 - RFC 7517, JSON Web Key (JWK)
 - RFC 7518, JSON Web Algorithms (JWA)
- Supported encryption algorithms
 - A128CBC-HS256
 - A256CBC-HS512
- Supported signing algorithms
 - RS256 (RSA 2048-bit key)
 - ES256 (ECC P-256)

OTrP Agent API

```
interface IOTrPAgentService {
```

String processMessage(String tsmInMsg) throws OTrPAgentException; String getTAInformation(String spid, String taid, byte[] nonce);
}

```
public class OTrPAgentException extends Throwable {
    private int errCode;
}
```

OTrP Operations and Messages

✓ Remote Device Attestation

Command	Descriptions
GetDeviceState	Retrieve information of TEE device state including SD and TA associated to a TAM

✓ Security Domain Management

Command	Descriptions
CreateSD	Create SD in the TEE associated to a TAM
UpdateSD	Update sub-SD within SD or SP related information
DeleteSD	Delete SD or SD related information in the TEE associated to a TAM

✓ Trusted Application Management

Command	Descriptions
InstallTA	Install TA in the SD associated to a TAM
UpdateTA	Update TA in the SD associated to a TAM
DeleteTA	Delete TA in the SD associated to a TAM

OTrP JSON Message Format and Convention

```
"<name>[Request | Response]": {
    "navload": "<navload contents of <nam
```

```
"payload": "<payload contents of <name>TBS[Request | Response]>",
```

```
"protected":"<integrity-protected header contents>",
```

```
"header": <non-integrity-protected header contents>,
```

```
"signature":"<signature contents>"
```

For example:

```
- CreateSDRequest
```

```
- CreateSDResponse
```

OTrP JSON Sample Message: GetDeviceState

```
"GetDeviceStateTBSRequest": {
  "ver": "1.0",
  "rid": "<Unique request ID>",
  "tid": "<transaction ID>",
  "ocspdat": "<OCSP stapling data of TSM certificate>",
  "icaocspdat": "<OCSP stapling data for TSM CA certificates>",
  "supportedsigalgs": "<comma separated signing algorithms>"
 "GetDeviceStateRequest": {
  "payload":"<BASE64URL encoding of the GetDeviceStateTBSRequest JSON above>",
  "protected": "<BASE64URL encoded signing algorithm>",
  "header": {
    "x5c": "<BASE64 encoded TSM certificate chain up to the root CA certificate>"
  },
  "signature":"<signature contents signed by TSM private key>"
```

OTrP Sample Message: CreateSD Request

```
"CreateSDTBSRequest": {
```

```
"ver": "1.0",
```

```
"rid": "<unique request ID>",
```

```
"tid": "<transaction ID>", // this may be from prior message
```

```
"tee": "<TEE routing name from the DSI for the SD's target>",
```

```
"nextdsi": "true | false",
```

```
"dsihash": "<hash of DSI returned in the prior query>",
```

```
"content": ENCRYPTED { // this piece of JSON data will be encrypted
```

```
"spid": "<SP ID value>",
```

```
"sdname": "<SD name for the domain to be created>",
```

```
"spcert": "<BASE64 encoded SP certificate>",
```

```
"tsmid": "<An identifiable attribute of the TSM certificate>",
```

```
"did": "<SHA256 hash of the TEE cert>"
```

OTrP Sample Message: CreateSD Response

"CreateSDTBSResponse": {

"ver": "1.0",

"status": "<operation result>",

"rid": "<the request ID received>",

"tid": "<the transaction ID received>",

"content": ENCRYPTED {

"reason":"<failure reason detail>", // optional

"did": "<the device id received from the request>",

"sdname": "<SD name for the domain created>",

"teespaik": "<TEE SP AIK public key, BASE64 encoded>",

"dsi": "<Updated TEE state, including all SD owned by this TSM>"